Technical data for channel profiles MM (zinced) | Definition of axes | | | | | | 1,75 | |-----------------------------|------------------------|----------------------|---------|---------|------------|---------| | ez ez ez | F
y
z
B | | 30 | 30 | 35 | 32 | | | | | MM-C-16 | MM-C-30 | MM-C-36 | MM-C-45 | | Channel wall thickness | t | [mm] | 1,0 | 1,0 | 1.75 / 1.0 | 1,75 | | Cross-sectional area | Α | [mm ²] | 69.75 | 96.35 | 159,73 | 220,58 | | Channel weight | | [g/m] | 565,0 | 779,0 | 1287,0 | 1762,0 | | Delivered length | | [m] | 2 | 2 | 2/3 | 3/6 | | Material | | | | | | | | Permissible stress | δ_{perm} | [N/mm ²] | 188.3 | 188.3 | 188.3 | 188.3 | | E-Modul | | [N/mm ²] | 210000 | 210000 | 210000 | 210000 | | Surface | | | | | | | | sendzimir galvanised | | | • | • | • | • | | Cross-section values Y-axis | | | | | | | | Axis of gravity A 1) | e ₁ | [mm] | 9.18 | 16.43 | 19.41 | 23.80 | | Axis of gravity B | e_2 | [mm] | 7.12 | 13.87 | 16.99 | 21.60 | | Moment of inertia | I_y | [cm ⁴] | 0.24 | 1.16 | 3.02 | 5.30 | | Permtion modulus A | W_{y1} | [cm ³] | 0.26 | 0.71 | 1.56 | 2.23 | | Permtion modulus B | W_{y2} | [cm ³] | 0.34 | 0.83 | 1.77 | 2.46 | | Radius of gyration | İ _y | [cm] | 0.59 | 1.10 | 1.38 | 1.55 | | Permissible moment 2) | M_y | [Nm] | 49.8 | 133.0 | 293.2 | 419.6 | | Z-axis | | | | | | | | Moment of inertia | l _z | [cm ⁴] | 1.09 | 1.51 | 2.74 | 4.04 | | Permtion modulus | W_z | [cm ³] | 0.67 | 1.01 | 1.71 | 2.53 | | Radius of gyration | i _z | [cm] | 1.20 | 1.25 | 1.31 | 1.35 | [•]The permissible stress σ_D / $\gamma_{G/O}$ where γ = 1,4. σ_D results from the higher yield strength (point) resulting from cold forming as per EN 1993-1-3: 2010-12: σ_D = f_{yK} / γ_M where γ_M = 1,1. 1) For the arithmetical bending dimensioning is the smaller value (W_{y_1} , W_{y_2}) decisive to (W_{y_1} = $I_{y/e1}$) bzw. W_{y_2} = $I_{y/e2}$). ²⁾ $M_y = \delta_{perm} \times min. (W_{y1}, W_{y2})$ Channel selection: [•] The given data is based on a single span (simply-supported beam) bearing a single load, F(N), at mid span, L/2. • If several loads are acting on a single span (simply-supported beam), these may be summated and regarded as a single load acting at mid span. By taking this approach, the design calculation is on the safe side. (Channel selection table). [•] The permissible stress in the steel and the max. deflection, L/200, are not exceeded with the given max. span widths, L (mm). [•] The channel's own weight has been considered.