

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0102 of

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

Hilti drilled plate MQZ-L11 and Hilti drilled plate MQZ-L13

Products related to installation systems supporting technical equipment for building services such as pipes, conduits, ducts and cables

Hilti AG Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN

L 1000446 L 1005049

12 pages including 8 annexes which form an integral part of this assessment

EAD 280016-00-0602

European Technical Assessment ETA-18/0102 English translation prepared by DIBt

original issued document and shall be identified as such.

Page 2 of 12 |

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 12 |

European Technical Assessment ETA-18/0102 English translation prepared by DIBt

Specific part

1 Technical description of the product

Object of this European Technical Assessment is the Hilti drilled plate MQZ-L11 and Hilti drilled plate MQZ-L13. The Hilti MQZ-L11 and MQZ-L13 drilled plates are steel plates that are stamped rectangularly with a centrally positioned opening, which is 11.5 mm or 13.5 mm in diameter. The plates have raised edges in the corners at the rear to ensure a perfect fit with the Hilti installation channels.

Annex A describes the dimensions and materials of the Hilti MQZ-L11 and MQZ-L13 drilled plates. The requirements for performance assessment are given in Annex B.

2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performance given in Section 3 can only be assumed if the Hilti MQZ-L11 and MQZ-L13 drilled plates is used in compliance with the specifications and under boundary conditions set out in Annexes A to C. The test and assessment methods on which this European Technical Assessment is based lead to an assumption of a working life of the Hilti MQZ-L11 and MQZ-L13 drilled plates of at least 50 years in final use under ambient temperatures in indoor areas. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

In accordance with the European Assessment Document EAD 280016-00-0602, the product is intended to be used in

a) installations for the support of sprinkler kits,

b) installations for the support of other building service elements such as pipes, conduits, ducts and cables.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	A1

3.2 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Dimensions and materials of Hilti MQZ-L11 and MQZ-L13 drilled plates	see Annex A
Resistance of Hilti MQZ-L11 and MQZ-L13 drilled plates at ambient temperature	see Annex C
Resistance of Hilti MQZ-L11 and MQZ-L13 drilled plates at elevated temperature	see Annex D

European Technical Assessment ETA-18/0102 English translation prepared by DIBt

Page 4 of 12 |

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 280016-00-0602, the following legal bases apply:

- In case of intended use a) specified in Section 2:
 Decision of the commission N° 1996/577/EC:
 System 1 applies for the assessment and verification of constancy of performance (AVCP)
- In case of intended use b) specified in Section 2:
 Decision of the commission N° 1999/472/EC:
 System 3 applies for the assessment and verification of constancy of performance (AVCP)

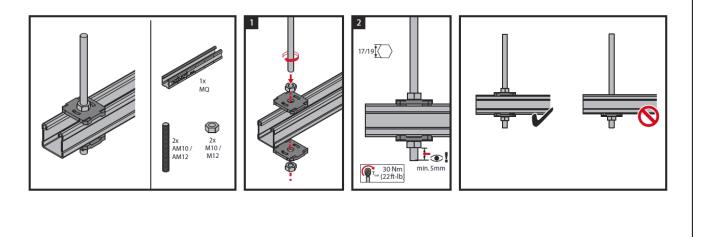
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

The technical details necessary for the implementation of the system for the assessment and verification of constancy of performance are laid down in the control plan (confidential part of this European Technical Assessment) deposited at Deutsches Institut für Bautechnik.

Page 5 of European Technical Assessment ETA-18/0102 of datum

English translation prepared by DIBt

Illutration	Dimension [mm]	Designation	Item- number	Materials
	50,5	MQZ-L11	2199455	S235JR in accordance with EN 10025-2, zinc coated
3	50,5 50,5	MQZ-L13	2199456	S235JR in accordance with EN 10025-2, zinc coated
i drilled plate MQZ-L11 and Hi	ti drilled plate MQZ-L13			Annex A



- MQZ-L11 and MQZ-L13 drilled plates are used in building service installation systems at ambient temperature and at elevated temperatures. MQZ-L11 and MQZ-L13 drilled plates are used to transfer building services component loads such as ducts and equipment for sprinklers, water, heating, cooling, ventilation, electrical and other installations. MQZ-L11 and MQZ-L13 drilled plates described in this ETA are suitable for undertaking this load-bearing function under the conditions listed in Section 2.
- MQZ-L11 and MQZ-L13 drilled plates are used to fix threaded rods to installation channels or brackets in conjunction with hexagonal nuts.
- The following information is a prerequisite for the information on the performance assessment in Annex C and D:
 - The performance of MQZ-L11 results in connection with zinc coated threaded rods in accordance with EN ISO 898-1 in strength class 4.8 as per table B2.1, zinc coated hexagonal nuts in accordance with EN ISO 898-2 in strength class 8 as per table B2.3 and Hilti installation channels according to Annex B3 to B5.
 - The performance of MQZ-L13 results in connection with zinc coated threaded rods in accordance with EN ISO 898-1 in strength class 4.8 as per table B2.2, zinc coated hexagonal nuts in accordance with EN ISO 898-2 in strength class 8 as per table B2.4 and Hilti installation channels according to Annex B3 to B5.
 - The resistance at ambient and elevated temperatures applies for static and centric actions according to the following set up:

The centre distance of the MQZ-L11 or MQZ-L13 drilled plates from the channel end is 25 mm. The centre distance of the suspension points with the drilled plates is 250 mm. The load is applied centrically between the suspension points.

- The resistance and deformation at elevated temperatures is referring to the boundary conditions of the standard temperature time curve in accordance with EN 1363-1.
- Installation instructions:

The installation channels are cut to length centrally between the longholes or the roundholes at the marking. The cut channel lies within a range of 2 mm from both sides of the marking.

Hilti drilled plate MQZ-L11 and Hilti drilled plate MQZ-L13

Requirements for performance assessment

Illutration	Designation	Item number	M thread	L [mm]
	AM10x3000 4.8	216418	M10	3000
L	AM10x2000 4.8	339796	M10	2000
M Caller and Caller	AM10x1000 4.8	339795	M10	1000

Table B2.2: Threaded rods for use with MQZ-L13

Illutration	Designation	Item number	M thread	L [mm]
	AM12x3000 4.8	216421	M12	3000
L	AM12x2000 4.8	216420	M12	2000
M	AM12x1000 4.8	339797	M12	1000

Table B2.3: Hexagonal nuts for use with MQZ-L11

Illutration	Designation	Item number	M thread	W [mm]	H [mm]
H	M10 hexagonal nut	216466	M10	17	8

Table B2.4: Hexagonal nuts for use with MQZ-L13

Illutration	Designation	Item number	M thread	W [mm]	H [mm]
H	M12 hexagonal nut	216467	M12	19	10

Hilti drilled plate MQZ-L11 and Hilti drilled plate MQZ-L13	
Requirements for performance assessment	Annex B2

Illutration ¹⁾	Item number	Designation	Length [m]	Materials and coatings
100 3 1 1 1	369596	MQ-41/3 3M	3	S250GD+Z275-M-A-C
41.3 22.3 41.3 7.5 41.3	369597	MQ-41/3 6M	6	EN 10346
50	2048102	MQ-41/3 3M LL	3	S250GD+Z275-M-A-0
41.3 22.3 41.3 7.5	2048103	MQ-41/3 6M LL	6	in accordance with EN 10346
75 2 1 5 1 1 1	369603	MQ-41 D 3m	3	S250GD+Z275-M-A-C
82.6 22.3 41.3 7.5	369604	MQ-41 D 6m	6	in accordance with EN 10346

¹⁾ Dimensions in mm

Hilti drilled plate MQZ-L11 and Hilti drilled plate MQZ-L13

Requirements for performance assessment

Illutration ²⁾	Item number	Designation	Length [m]	Materials and coatings
100 18.5 63 1.5 21.5 22.3 41.3 7.5	2184773	MQ-21.5 6m	6	
	2184772	MQ-21.5 3m	3	S280GD+Z140-M-A-C in accordance with EN 10346
	2184771	MQ-21.5 2m	2	
100 18.5	369592	MQ-41 6m	6	
18.5 18.5 18.5 18.5 18.5 10 10 10 10 10 10 10 10 10 10	369591	MQ-41 3m	3	S250GD+Z275-M-A-C in accordance with EN 10346
	304559	MQ-41 2m	2	
100 18.5	2141964	MQ-41-L 6m	6	
1.5 1.5 41.3 41.3 41.3 7.5 63 63 63 63 63 1.5 63x13.5 911.5 911.5	2141965	MQ-41-L 3m	3	S250GD+Z140-M-A-C in accordance with EN 10346
	2141966	MQ-41-L 2m	2	

Hilti drilled plate MQZ-L11 and Hilti drilled plate MQZ-L13

Requirements for performance assessment

Classification cross section in accordance with EN 1993-1-1 - Cross section areas A Shear areas Az Centroid position YC.0 ZControid position J/C.0 Moments of inertia I/ Inclination of principal axes a Polar moments of inertia Ip Polar moments of inertia Ip Polar radii of gyration i/ Varping radius of gyration i/ Varping radius of gyration Js Secondary torsional constant J Varping constants I/ VMarping constants I/ VMarping constants I/ Section moduli Sr,max Symmatric bending moment Mpl,y,d Max. plastic bending moment Mpl,y,d Max. plastic section moduli Zr Plastic shear areas Apl,y	x z 39,8 375.88 375.88 375.88 48.69 195.47 19.15 20.57 76963.50 107949.00 90.00 107949.00 90.00 184913.00 778900.00 14.31 16.95 22.18 45.52	379.93 379.93 54.43 194.59 19.15 20.76 78224.80 108011.00 90.00 186236.00 780561.00 14.35 16.86 22.14	66.37 197.58 0.00 323585.00 154070.00 0.00 477656.00 477656.00 24.35 16.80	20,65 Z Z Z 3 142.71 142.71 142.71 23.47 41.86 0.00 -9.12 9168.75 37416.40 90.00 46585.10 115093.00 8.02	Y Z 263.62 263.62 27.23 131.51 19.65 20.52 57501.00 76416.00 90.00 133917.00 601859.00	20.65	mm mm mm
accordance with EN 1993-1-1 Cross section areas A Shear areas A_{z} Shear areas $y_{C,0}$ Centroid position $Z_{C,0}$ Moments of inertia I_y nclination of principal axes α Polar moments of inertia I_p Radii of gyration i_p Polar radii of gyration $i_{p,M}$ Narping radius of gyration $i_{\omega,M}$ Forsional constant J Secondary torsional constant J Section moduli $S_{y,max}$ Section moduli $S_{y,max}$ Section moduli St Max. plastic bending moment Mpl.y.d Max. plastic section moduli Z_y Zz Polastic shear areas	375.88 375.88 48.69 195.47 19.15 20.57 76963.50 107949.00 90.00 184913.00 778900.00 14.31 16.95 22.18	379.93 379.93 54.43 194.59 19.15 20.76 78224.80 108011.00 90.00 186236.00 780561.00 14.35 16.86 22.14	545.97 545.97 66.37 197.58 0.00 0.00 323585.00 154070.00 0.00 477656.00 477656.00 24.35 16.80	142.71 142.71 23.47 41.86 0.00 -9.12 9168.75 37416.40 90.00 46585.10 115093.00 8.02	263.62 263.62 27.23 131.51 19.65 20.52 57501.00 76416.00 90.00 133917.00 601859.00	199.57 199.57 20.24 98.37 0.00 -19.91 44773.00 58981.50 90.00 103754.00	mm mm mm mm
Cross section areas A_{tot} Shear areas A_y Shear areas A_z Centroid position $Z_{C,0}$ Moments of inertia I_y Inclination of principal axes α Polar moments of inertia I_p Radii of gyration i_p Polar radii of gyration $i_{\mu,M}$ Torsional constant J Secondary torsional constant J Secondary torsional constant J VMarping constants $I_{\omega,C}$ VMarping constants $I_{\omega,C}$ VMarping constants $I_{\omega,C}$ Section moduli $S_{y,max}$ Section moduli $S_{y,max}$ Max. plastic bending moment Mpl.y.d Max. plastic section moduli Z_y Zz Plastic shear areas	375.88 48.69 195.47 19.15 20.57 76963.50 107949.00 90.00 184913.00 778900.00 14.31 16.95 22.18	379.93 54.43 194.59 19.15 20.76 78224.80 108011.00 90.00 186236.00 780561.00 14.35 16.86 22.14	545.97 66.37 197.58 0.00 323585.00 154070.00 0.00 477656.00 477656.00 24.35 16.80	142.71 23.47 41.86 0.00 -9.12 9168.75 37416.40 90.00 46585.10 115093.00 8.02	263.62 27.23 131.51 19.65 20.52 57501.00 76416.00 90.00 133917.00 601859.00	199.57 20.24 98.37 0.00 -19.91 44773.00 58981.50 90.00 103754.00	mm mm mm mm
Average Average Centroid position $y_{C,0}$ Zentroid position $Z_{C,0}$ Moments of inertia I_y Inclination of principal axes α Polar moments of inertia I_p Radii of gyration i_p Polar radii of gyration i_p Polar radii of gyration $i_{p,M}$ Warping radius of gyration $i_{\omega,M}$ Torsional constant J Secondary torsional constant Secondary torsional constant Secondary torsional<	48.69 195.47 20.57 76963.50 107949.00 90.00 184913.00 778900.00 14.31 16.95 22.18	54.43 194.59 19.15 20.76 78224.80 108011.00 90.00 186236.00 780561.00 14.35 16.86 22.14	66.37 197.58 0.00 323585.00 154070.00 0.00 477656.00 477656.00 24.35 16.80	23.47 41.86 0.00 -9.12 9168.75 37416.40 90.00 46585.10 115093.00 8.02	27.23 131.51 19.65 20.52 57501.00 76416.00 90.00 133917.00 601859.00	20.24 98.37 0.00 -19.91 44773.00 58981.50 90.00 103754.00	mm mm mm mm
Centroid position $y_{C,0}$ $Z_{C,0}$ Moments of inertia $ _{y}$ Inclination of principal axes α Polar moments of inertia $ _{p,M}$ Radii of gyration i_{y} Polar radii of gyration $i_{p,M}$ Warping radius of gyration $i_{\omega,M}$ Torsional constantJSecondary torsional constantJSecondary torsional constantJCation of the shear center $y_{M,0}$ ZM,0ZMWarping constants $ _{\omega,C}$ Location moduli $S_{y,max}$ Section moduli $S_{y,max}$ Section moduli S_{t} Max. plastic bending moment $M_{pl,y,d}$ Max. plastic section moduli Z_y ZzPlastic shear areasApl.y $A_{pl,y}$	19.15 20.57 76963.50 107949.00 90.00 184913.00 778900.00 14.31 16.95 22.18	19.15 20.76 78224.80 108011.00 90.00 186236.00 780561.00 14.35 16.86 22.14	0.00 0.00 323585.00 154070.00 0.00 477656.00 477656.00 24.35 16.80	0.00 -9.12 9168.75 37416.40 90.00 46585.10 115093.00 8.02	19.65 20.52 57501.00 76416.00 90.00 133917.00 601859.00	0.00 -19.91 44773.00 58981.50 90.00 103754.00	mm mm
ZC,0Moments of inertia I_y Inclination of principal axes α Polar moments of inertia I_p Radii of gyration i_y Radii of gyration i_y Polar radii of gyration i_p Polar radii of gyration i_p Marping radius of gyration $i_{\omega,M}$ Torsional constantJSecondary torsional constantJLocation of the shear center $y_{M,0}$ ZM y_M ZM Z_M Warping constants $I_{\omega,C}$ I ω,M $S_{y,max}$ Section moduli $S_{y,max}$ Section moduli $S_{t,min}$ Torsional section modulusStMax. plastic bending moment $M_{pl,y,d}$ Max. plastic section moduli Z_y Plastic shear areas $A_{pl,y}$	76963.50 107949.00 90.00 184913.00 778900.00 14.31 16.95 22.18	78224.80 108011.00 90.00 186236.00 780561.00 14.35 16.86 22.14	323585.00 154070.00 0.00 477656.00 477656.00 24.35 16.80	9168.75 37416.40 90.00 46585.10 115093.00 8.02	57501.00 76416.00 90.00 133917.00 601859.00	44773.00 58981.50 90.00 103754.00	mm
Inclination of principal axes Image: constant of the shear center Image: constant of the shear center Polar moments of inertia Ip Radii of gyration Ip Radii of gyration Ip Polar radii of gyration Ip Polar radii of gyration Ip Warping radius of gyration Ip Torsional constant J Secondary torsional constant Js Location of the shear center YM,0 ZM Zm Warping constants Imote constant Section moduli Symmax Symmax Symmax Section moduli St Max. plastic bending moment Mpl.y.d Max. plastic section moduli Zy Zz Plastic shear areas	90.00 184913.00 778900.00 14.31 16.95 22.18	90.00 186236.00 780561.00 14.35 16.86 22.14	0.00 477656.00 477656.00 24.35 16.80	90.00 46585.10 115093.00 8.02	90.00 133917.00 601859.00	90.00 103754.00	۳m
Ip Ip Polar moments of inertia Ip Radii of gyration iv Polar radii of gyration ip Polar radii of gyration ip Warping radius of gyration ip Torsional constant J Secondary torsional constant Js Location of the shear center $y_{M,0}$ ZM,0 YM ZM YM Warping constants Iw,C Iw,M Iw,C Section moduli $S_{y,max}$ Section moduli $S_{z,max}$ Sz,man Sz,man Max. plastic bending moment Mpl,y,d Max. plastic section moduli Z_y Plastic shear areas Apl,y	184913.00 778900.00 14.31 16.95 22.18	186236.00 780561.00 14.35 16.86 22.14	477656.00 477656.00 24.35 16.80	46585.10 115093.00 8.02	133917.00 601859.00	103754.00	
Radii of gyration i_y Polar radii of gyration i_p Warping radius of gyration $i_{\omega,M}$ Torsional constant J Secondary torsional constant Js Location of the shear center $y_{M,0}$ ZM ZM Warping constants $I_{\omega,C}$ Iwarping constants $I_{\omega,C}$ Section moduli $S_{y,max}$ Section moduli $S_{z,max}$ Sz,min $S_{z,max}$ Max. plastic bending moment $M_{pl,y,d}$ Max. plastic section moduli Z_y Plastic shear areas $A_{pl,y}$	14.31 16.95 22.18	14.35 16.86 22.14	24.35 16.80	8.02			
Iz ip Polar radii of gyration $i_{p,M}$ Warping radius of gyration $i_{\omega,M}$ Torsional constant J Secondary torsional constant Js Location of the shear center $y_{M,0}$ Z _{M,0} YM ZM ZM Warping constants $I_{\omega,C}$ I_{\omega,M} T_{\omega,M} Section moduli $S_{y,max}$ Sz,max $S_{z,max}$ Nax. plastic bending moment $M_{pl,y,d}$ Max. plastic section moduli Z_y Zz Plastic shear areas	22.18	22.14			14.77	14.98	mn
Image: constant sector Ip,M Warping radius of gyration $i_{\omega,M}$ Torsional constant J Secondary torsional constant Js Location of the shear center $y_{M,0}$ ZM ZM Warping constants $I_{\omega,C}$ I_{\omega,M} $r_{\omega,M}$ Section moduli $S_{y,max}$ Section moduli $S_{z,max}$ Torsional section modulus S_t Max. plastic bending moment $M_{pl,y,d}$ Max. plastic section moduli Z_y Zz Z_y Plastic shear areas $A_{pl,y}$	45.52	45.00	29.58	16.19 18.07	17.03 22.54	17.19 22.80	mn
$\begin{array}{c c c c c c c } \hline Torsional constant & J \\ \hline Secondary torsional constant & J_s \\ \hline Secondary torsional constant & J_s \\ \hline Secondary torsional constant & J_s \\ \hline Location of the shear center & \underline{y_{M,0}} & \underline{z_{M,0}} & z$	7.02		29.58 17.32	28.40 6.85	47.78 7.19	48.53 7.44	
Location of the shear center $y_{M,0}$ $Z_{M,0}$ y_M Z_M y_M Warping constants $I_{\omega,C}$ $I_{\omega,M}$ $I_{\omega,M}$ Section moduli $S_{y,max}$ Sz,min $S_{z,min}$ Torsional section modulus S_t Max. plastic bending moment $M_{pl,y,d}$ Max. plastic section moduli Z_y Zz Z_p Plastic shear areas $A_{pl,y}$	848.88	856.29	575.03	76.58	269.75	112.13	mm
y_M Z_M Warping constants $I_{\omega,C}$ $I_{\omega,M}$ $r_{\omega,M}$ Section moduli $S_{y,max}$ Section moduli $S_{z,max}$ Sz,main $S_{z,max}$ Torsional section modulus S_t Max. plastic bending moment $M_{pl,y,d}$ Max. plastic section moduli Z_y Zz $A_{pl,y}$	105319.00 19.15	19.15	91246.30 0.00	25157.50 0.00	74075.40 19.65	565590.00 0.00	mm mn
Warping constants $I_{\omega,C}$ $I_{\omega,M}$ $r_{\omega,M}$ Section moduli $S_{y,max}$ Section moduli $S_{z,max}$ Sz,min $S_{z,min}$ Torsional section modulus S_t Max. plastic bending moment $M_{pl,y,d}$ Max. plastic section moduli Z_y Zz $A_{pl,y}$ Plastic shear areas $A_{pl,y}$	60.32 0.00			12.77 0.00	62.63 0.00	22.92	
$r_{\omega,M}$ Section moduli $S_{y,max}$ $S_{y,min}$ $S_{z,max}$ Sz,man $S_{z,min}$ Torsional section modulus S_t Max. plastic bending moment $M_{pl,y,d}$ Max. plastic section moduli Z_y Z_z Z_z Plastic shear areas $A_{pl,y}$	39.75 2.09277E+08 38387600	2.07678E+08	1.43225E+08	21.90 23255400.00			
$\begin{tabular}{ c c c c c } \hline S_{y,min} & S_{z,max} & S_{z,min} \\ \hline S_{z,min} & S_{z,min} & S_{z,min} \\ \hline & \\ \hline Max. plastic bending moment & $M_{pl,y,d}$ \\ \hline & $M_{pl,z,d}$ \\ \hline & $Max. plastic section moduli$ & Z_y \\ \hline & Z_z \\ \hline \\ \hline \\ \hline Plastic shear areas & $A_{pl,y}$ \\ \hline \end{tabular}$	0.00	0.00	0.00	5395050.00 0.00	31116700.00 0.00	26017600 0.00	•
Sz,min Torsional section modulus St Max. plastic bending moment $M_{pl,y,d}$ Max. plastic section moduli Z_y Zz $Z_{pl,y}$	4002.48	-3514.15	-7833.74	928.54 -788.66	2906.72 -2672.22	2248.07 -2093.62	
Torsional section modulus S_t Max. plastic bending moment $M_{pl,y,d}$ Max. plastic section moduli Z_y Zz $Z_{pl,y}$	5227.58 -5277.58			1811.93 -1811.93	3700.53 -3700.54	2856.29 -2856.25	mm mm
Max. plastic bending moment $M_{pl,z,d}$ Max. plastic section moduli Z_{z} Plastic shear areas $A_{pl,y}$	282.96	285.43	287.51	51.06	134.88	75.76	mm
Max. plastic section moduli $\frac{Z_y}{Z_z}$	NPA ³⁾ NPA			NPA NPA	NPA NPA	NPA NPA	
Plastic shear areas A _{pl,y}	NPA NPA	NPA	NPA NPA	NPA NPA	NPA NPA	NPA NPA	mm
A _{pl,z}	NPA NPA	NPA	NPA NPA	NPA NPA	NPA NPA	NPA NPA	mm
Area bisecting axis position f _{y,0}	NPA	NPA	NPA	NPA	NPA	NPA	mn
$\frac{f_{z,0}}{Plastic shear forces} = \frac{V_{pl,y,d}}{V_{pl,y,d}}$	NPA	NPA	NPA NPA	NPA NPA	NPA NPA	NPA NPA	mr kN
Plastic axial force N _{pl,d}	NPA		NPA NPA	NPA NPA	NPA NPA	NPA NPA	kN kN
Buckling curves BC _z			C	c c	С	с с	-

³⁾ NPA: No performance assessed

Hilti drilled plate MQZ-L11 and Hilti drilled plate MQZ-L13

Requirements for performance assessment

Page 11 of European Technical Assessment ETA-18/0102 of datum

English translation prepared by DIBt

Illutration	Installation channel	
Drilled plates	MQ-41/3 MQ-41/3 LL MQ-41 MQ-41-L MQ-21.5	
Drilled plates	MQ-41 D	

Table C1: Direction of force and arrangement of the drilled plates

Table C2: Characteristics at ambient temperature

Drilled plates		Characteristic pull-out resistance	Partial safety coefficient ⁴⁾	
	Installation channel	F _{Rk} [kN]	۲м	
MQZ-L11 MQZ-L13	MQ-41/3	25.00	1.99	
	MQ-41/3 LL	25.00		
	MQ-41	18.40	1.75	
	MQ-41 D	16.40		
	MQ-41-L	11.70	1.40	
	MQ-21.5	16.10	1.93	

⁴⁾ provided that no other national regulations apply

Hilti drilled plate MQZ-L11 and Hilti drilled plate MQZ-L13

Direction of force and arrangement of the drilled plates Characteristics at ambient temperature Annex C

Table D1: Pull-out resistance at elevated temperatures (2 suspension points) Parameter of regression curve $2*F_{Rk}(t) = c_3 (c_1 + c_2 / t)$									
Drilled plates	Installation channel	C ₁	C ₂	C ₃	t _{min} [Minutes]	t _{max} [Minutes]			
MQZ-L11 MQZ-L13	MQ-41/3	963.500	76594.354	0.847958	25	150			
	MQ-41/3 LL								
	MQ-41	NPA ⁵⁾	NPA	NPA	NPA	NPA			
	MQ-41 D	NEA							
	MQ-41-L	NPA	NPA	NPA	NPA	NPA			
	MQ-21.5	NPA	NPA	NPA	NPA	NPA			

. . . . 10 . د اہ . 、 .

Table D2: Pull-out resistance $F_{Rk,t}$ at elevated temperatures⁶⁾ of the single drilled plate

Drilled plates	Installation channel	F _{Rk,30} [N]	F _{Rk,60} [N]	F _{Rk,90} [N]	F _{Rk,120} [N]
MQZ-L11 MQZ-L13	MQ-41/3	1491	949	769	679
	MQ-41/3 LL				
	MQ-41	NPA	NPA	NPA	NPA
	MQ-41 D				
	MQ-41-L	NPA	NPA	NPA	NPA
	MQ-21.5	NPA	NPA	NPA	NPA

⁵⁾ NPA: No performance assessed

⁶⁾ Direction of force and arrangement of the drilled plates see Table C1

Hilti drilled plate MQZ-L11 and Hilti drilled plate MQZ-L13

Pull-out resistance at elevated temperatures

Annex D