

HILTI HUS4 **SCREW ANCHOR**

ETA-20/0867 (02.12.2021)

English 2-28 **Deutsch** 29-55

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0867 of 2 December 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Hilti concrete screw HUS4

Mechanical fastener for use in concrete

Hilti Aktiengesellschaft Feldkircherstrasse 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

27 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 08/2021

European Technical Assessment ETA-20/0867

Page 2 of 27 | 2 December 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z94339.21 8.06.01-714/20

European Technical Assessment ETA-20/0867

Page 3 of 27 | 2 December 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti concrete screw HUS4 is an anchor in size 8, 10, 12, 14 and 16 mm made of galvanized steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B4 to B6, Annex C1 and C3
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C2 and C4
Displacements (static and quasi-static loading)	See Annex C11
Characteristic resistance for seismic performance category C1	See Annex C5 and C6
Durability	See Annex B1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C7 to C10

Z94339.21 8.06.01-714/20

European Technical Assessment ETA-20/0867

Page 4 of 27 | 2 December 2021

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-01-0601 the applicable European legal act is: [96/582/EC].

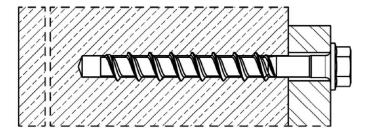
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

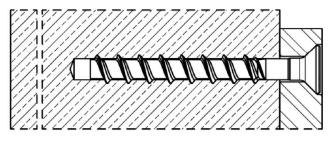
Issued in Berlin on 2 Dezember 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock

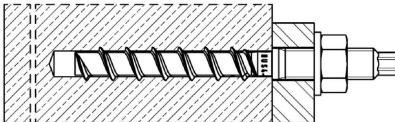

Head of Section

beglaubigt:
Tempel

Z94339.21 8.06.01-714/20

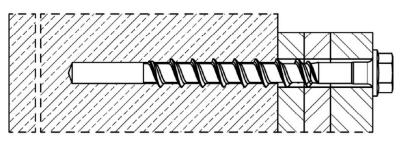


Installed condition without adjustment

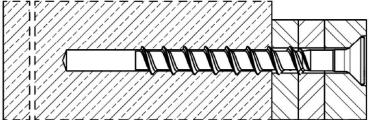


HUS4-H (hexagon head configuration sizes 8, 10, 12, 14 and 16)

HUS4-HF (hexagon head configuration sizes 8, 10, 14 and 16)


HUS4-C (countersunk head configuration sizes 8 and 10)

HUS4-A (threaded rod connection sizes 10 with M12 and 14 with M16)


HUS4-AF (threaded rod connection sizes 10 with M12 and 14 with M16)

Installed condition with adjustment - hnom2, hnom3

HUS4-H (hexagon head configuration sizes 8, 10, 12, and 14)

HUS4-HF (hexagon head configuration sizes 8, 10, and 14)

HUS4-C (countersunk head configuration sizes 8 and 10)

Hilti screw anchor HUS4

Product description

Installed condition with and without adjustment

Annex A1

Table A1: Screw types

Hilti HUS4-H, sizes 8,10, 12, 14 and 16, hexagonal head configuration, galvanized **Hilti HUS4-HF**, sizes 8,10, 14 and 16, hexagonal head configuration, multilayer coating

Hilti HUS4-C, sizes 8 and 10, countersunk head configuration, galvanized

Hilti HUS4-A, size 10 with external thread M12 and size 14 with external thread M16, galvanized **Hilti HUS4-AF,** size 10 with external thread M12 and size 14 with external thread M16, multilayer coating

Hilti screw anchor HUS4

Product description

HUS4 screw types

Annex A2

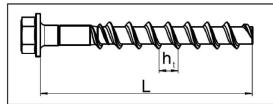


Table A2: Materials

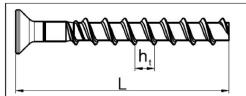
Part	Material
HUS4 screw anchor (all types in Table A1)	Carbon steel Rupture elongation $A_5 \le 8\%$

Table A3: Fastener dimensions and marking HUS4-H(F)

Fastener size HU	JS4-		H(F) 8			H(F) 10			H 12			H(F) 14		H(F) 16		
Nominal fastener diameter	d	[mm]	8		10			12			14			16		
Pitch of the thread	ht	[mm]		8		10		12			14		13,2			
Nominal			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
embedment depth	h_{nom}	[mm]	40	60	70	55	75	85	60	80	100	65	85	115	85	130
Effective embedment depth	h _{ef}	[mm]		$h_{ef} = 0.85 * (h_{nom} - 0.5 * h_t) \le h_{ef,max}$												
Limits of effective embedment depth	h _{ef,max}	[mm]	56,1			68,0		79,9		91,8		10-	4,9			
Length of screw min / max	L	[mm]	4	15 / 15	0	6	60 / 30	5	70 / 150		75 / 150		100	/ 205		

HUS4	HUS4: Hilti Universal Screw 4th generation							
H: HF:	Hexagonal head, galvanized Hexagonal head, multilayer coating							
10:	Nominal screw diameter d [mm]							
100:	Length of screw [mm]							

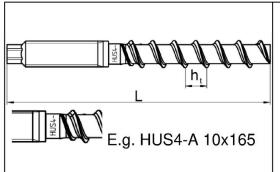
Hilti screw anchor HUS4


Production description
Materials, fastener dimensions and head marking

Annex A3

Table A4: Fastener dimensions and marking HUS4-C

Fastener size HUS4-				C 8			C 10		
Nominal fastener diameter	d	[mm]		8			10		
Pitch of the thread	ht	[mm]	8			10			
Nominal embedment depth			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth	h _{nom}	[mm]	40	60	70	55	75	85	
Effective embedment depth	h _{ef}	[mm]	$h_{ef} = 0.85 * (h_{nom} - 0.5 * h_t) \le h_{ef,max}$						
Limits of effective embedment depth	h _{ef,max}	[mm]	56,1 68,0						
Length of screw min / max	L	[mm]		55 / 85 70 / 120					



HUS4	HUS4: Hilti Universal Screw 4th generation					
C:	C: Countersunk head, galvanized					
10:	10: Nominal screw diameter d [mm					
100	Length of screw [mm]					

Table A5: Fastener dimensions and marking HUS4-A

Fastener size HUS4-				A(F) 10			A(F) 14		
Nominal fastener diameter	d	[mm]		10			14		
Metric thread conection			M12			M16			
Pitch of the thread	ht	[mm]	10			14			
Manaissal analessalessalessalessalessales			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth	h_{nom}	[mm]	55	75	85	65	80	115	
Effective embedment depth	h _{ef}	[mm]	$h_{ef} = 0.85 * (h_{nom} - 0.5 * h_t) \le h_{ef,max}$						
Limits of effective embedment depth	h _{ef,max}	[mm]	68,0 91,8						
Length of screw min / max	L	[mm]		120 / 165 155 / 205					

HUS4:	Hilti Un	Hilti Universal Screw 4 th generation								
A: AF:		Thread connection, galvanized Thread connection, multilayer coating								
10:	Nomina	Nominal screw diameter d [mm]								
165:	Length	Length of screw L [mm]								
8:	Carbon	steel								
K:	Length	Length identification HUS4-A 10x165								
G	I	I K J L N								
10x120	10x140	10x165	14x155	14x185	14x205					

Hilti screw anchor HUS4	Annex A4
Production description Fastener dimensions and head marking	Ailliex A4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loadings
- · Seismic action for performance category C1
- Fire exposure

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 +A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206-1:2010+A1:2016.
- · Cracked and uncracked concrete.

Use conditions (Environmental conditions):

Anchorages subject to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with:
 EN 1992-4:2018 and EOTA Technical Report TR 055 edition February 2018.
- In case of requirements to resistance to fire local spalling of the concrete cover must be avoided.

Installation:

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the fastener must not be possible.
- The head of the fastener (HUS4-H and HUS4-C) must be supported on the fixture and is not damaged.

Hilti screw anchor HUS4	
Intended use Specifications	Annex B1

Specifications of intended use: Drilling and cleaning

Table B1: Static and quasi static loading

HUS4			Fastener size and embedment depth hnom
Cracked and uncracke	d concrete		
Hammer drilling (HD) ¹⁾	cleaned	_ ~~~	sizes 8 to 16 at all hnom
Hammer drining (HD)	not cleanded		sizes 8 to 14 at all hnom
Hammer drilling with Hilt TE-CD (HDB) 1)	Hammer drilling with Hilti hollow drill bit € FE-CD (HDB) 1)		sizes 12 and 14 at all h _{nom}
Uncracked concrete			
Diamond coring (DD) DD30-W handheld and v DD-EC1 handheld	Diamond coring (DD) DD30-W handheld and with stand		sizes 10 to 14 at h _{nom3}

¹⁾ Adjustment is possible for sizes 8 to 14 at hnom2+3

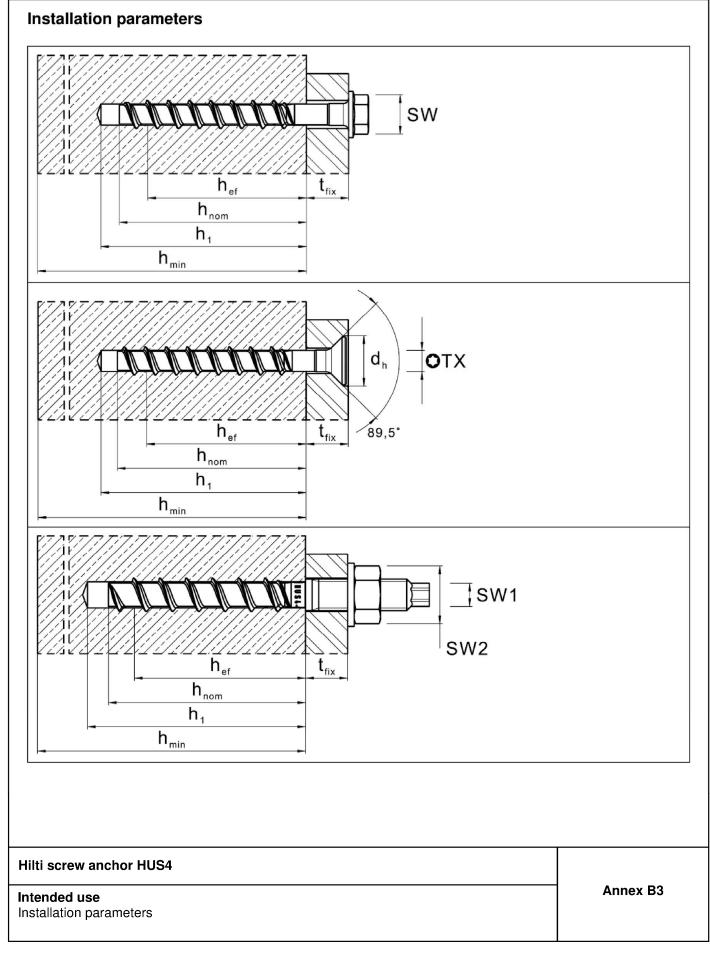
Table B2: Seismic performance category C1

HUS4		Fastener size and embedment depth hnom	
Hammer drilling (HD) ¹⁾	cleaned		sizes 8 to 14 at hnom2+3 size 16 at hnom1+2
	not cleanded		sizes 8 to 14 at hnom2+3
Hammer drilling with Hilti hollow drill bit TE-CD (HDB) 1)			sizes 12 and 14 at h _{nom2+3}

¹⁾ Adjustment is possible for sizes 8 to 14 at h_{nom2+3}

Table B3: Static and quasi static loading under fire exposure

HUS4		Fastener size and embedment depth h_{nom}	
Hammer drilling (HD) ¹⁾	cleaned	_ ~~~~	sizes 8 to 16 at all hnom
Hammer drilling (HD)	not cleanded		sizes 8 to 14 at all hnom
Hammer drilling with Hilti hollow drill bit TE-CD (HDB) 1)			sizes 12 and 14 at all h _{nom}


¹⁾ Adjustment is possible for sizes 8 to 14 at hnom2+3

Hilti screw anchor HUS4

Intended use Specifications

Annex B2

Fastener size HUS4				8			10		
Туре			H, C			H, C, A			
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedmenth depth	h _{nom}	[mm]	40	60	70	55	75	85	
Nominal drill hole diameter	d ₀	[mm]		8	•	10			
Cutting diameter of drill bit	d _{cut} ≤	[mm]		8,45			10,45		
Cutting diameter of diamond core bit	d _{cut} ≤	[mm]		-			9,9		
Clearance hole diameter through setting	d _f ≤	[mm]		12			14		
Clearance hole diameter pre setting (A-type)	d _f ≤	[mm]		-			14		
Wrench size (H, HF-type)	SW	[mm]		13			15		
Wrench size for hex head (A-type)	SW1	[mm]		-			8		
Wrench size for nut (A-type)	SW2	[mm]		-			19		
Maximum installation torque (A-type)	max T _{inst}	[Nm]		-			20		
Torx size (C-type)	TX	-		45		50			
Diameter of countersunk head	dh	[mm]		18			21		
Depth of drill hole for cleaned hole hammer drilling,					(h _{nom} +	10 mm)			
diamond coring, or uncleanded hammer drilling overhead	h₁ ≥	[mm]	50	70	80	65	85	95	
Depth of drill hole for	. .	[1		(ł	n _{nom} + 10 r	nm) + 2 * d ₀			
uncleanded hole hammer drilling in wall and floor position	h ₁ ≥	[mm]	66	86	96	85	105	115	
Depth of drill hole (with adjustability) for cleaned hole hammer drilling,					(h _{nom} +	20 mm)			
diamond coring, uncleanded hammer drilling overhead	h₁≥	[mm]	-	80	90	-	95	105	
Depth of drill hole (with adjustability) for	1	F 1		(1	n _{nom} + 20 r	nm) + 2 *	mm) + 2 * d ₀		
uncleaned hole hammer drilling in wall and floor position	h ₁ ≥	[mm]	-	96	106	-	115	125	
No. 1		. ,	(h ₁ + 30 mm)			•			
Minimum thickness of concrete member	h _{min} ≥	[mm]	80	100	120	100	130	140	
Minimum spacing	S _{min} ≥	[mm]	35		40				
Minimum edge distance	C _{min} ≥	[mm]] 35 40						
Hilti Setting tool 1)			SIW 22T-A SIW 6 AT-A22 SIW 6.2 AT-A22 gear 1 SIW 8.1 AT gear SIW 9-A22			22 422 ear 1			

¹⁾ Installation with other impact screw driver of equivalent power is possible.

Hilti screw anchor HUS4	
Intended use Installation parameters	Annex B4

Table B5: Installation parameters HUS4-12 and 14

Fastener size HUS4				12			14		
Туре				Н			H, A		
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedmenth depth	h_{nom}	[mm]	60	80	100	65	85	115	
Nominal drill hole diameter	d ₀	[mm]		12			14		
Cutting diameter of drill bit	d _{cut} ≤	[mm]		12,50			14,50		
Cutting diameter of diamond core bit	d _{cut} ≤	[mm]		12,2			-		
Clearance hole diameter through setting	d _f ≤	[mm]		16			18		
Clearance hole diameter pre setting (A-type)	d _f ≤	[mm]		-			18		
Wrench size (H, HF-type)	SW	[mm]		17			21		
Wrench size for hex head (A-type)	SW1	[mm]		-			12		
Wrench size for nut (A-type)	SW2	[mm]		-			24		
Maximum installation torque (A-type)	max T _{inst}	[Nm]		-			80		
Depth of drill hole for cleaned hole hammer drilling,					(h _{nom} +	10 mm)			
hollow drill bit, diamond coring, or uncleanded hammer drilling overhead	h₁ ≥	[mm]	70	90	110	75	95	125	
Depth of drill hole for uncleanded hole hammer drilling in wall and	h₁ ≥	[mm]	(h _{nom} + 10 mm) + 2 * d ₀						
floor position	111 =	[]	94	114	134	103	123	153	
Depth of drill hole (with adjustability) for cleaned hole hammer drilling,	L 5	[(h _{nom} +	20 mm)			
hollow drill bit, diamond coring, uncleanded hammer drilling overhead	h₁≥	[mm]	-	100	120	-	105	135	
Depth of drill hole (with adjustability) for				(r	n _{nom} + 20 r	nm) + 2 *	d ₀		
uncleaned hole hammer drilling in wall and floor position	h₁ ≥	[mm]	-	124	144	-	133	163	
			(h ₁ + 30 mm)						
Minimum thickness of concrete member	h _{min} ≥	[mm]	110	130	150	120	160	200	
Minimum spacing	S _{min} ≥	[mm]	50			60			
Minimum edge distance	C _{min} ≥	[mm]	50 60						
Hilti Setting tool 1)			SIV	SIW 22T-/ V 6.2 AT-/ SIW 8.1 A SIW 9-A2	422 T	SIV	SIW 22T-A V 6.2 AT-A SIW 8.1 A SIW 9-A22	4 22 T	

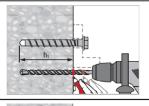
¹⁾ Installation with other impact screw driver of equivalent power is possible.

Hilti screw anchor HUS4	
Intended use Installation parameters	Annex B5

Table B6: Installation parameters HUS4-16

Fastener size HUS4	16 H				
Туре					
			h _{nom1}	h _{nom2}	
Nominal embedmenth depth	h_{nom}	[mm]	85	130	
Nominal drill hole diameter	d ₀	[mm]	16	6	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	16,50		
Clearance hole diameter through setting	d _f ≤	[mm]	20		
Wrench size	SW	[mm]	24		
Depth of drill hole for	L >	[mm]	(h _{nom} + 10 mm)		
cleaned hole hammer drilling,	h₁≥	[mm] -	95	140	
Minimum thickness of concrete member	h _{min} ≥	[mm]	130	195	
Minimum spacing	S _{min} ≥	[mm]	90		
Minimum edge distance	C _{min} ≥	[mm]	65		
Hilti Setting tool 1)			SIW 22T-A SIW 6.2 AT-A22 SIW 8.1 AT SIW 9-A22		

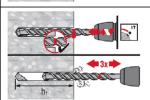
¹⁾ Installation with other impact screw driver of equivalent power is possible.


Hilti screw anchor HUS4	
Intended use Installation parameters	Annex B6

Installation instructions

Hole drilling and cleaning

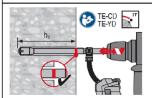
Hammer drilling (HD) all sizes (size 16 with cleaning only)



Mark drilling depth h₁ for pre or through installation. Details for drilling depth h₁ see table B4 to B6.

Cleaning needed in downward and horizontal installation direction with drill hole depth.

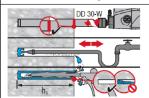
 $h_1 = h_{nom} + 10 \text{ mm}$


No cleaning is allowed in upward installation direction.

No cleaning is allowed in downward and horizontal installation direction when 3x ventilation¹⁾ after drilling is executed.

Drill hole depth $h_1 = h_{nom} + 10 \text{ mm} + 2 * d_0$

 $^{1)}$ moving the drill bit in and out of the drill hole 3 times after the recommended drilling depth h_1 is achieved. This procedure shall be done with both revolution and hammer functions activated in the drilling machine. For more details read the relevant MPII.

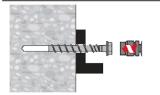

Hammer drilling with Hilti hollow drill bit (HDB) TE-CD size 12 and 14.

No cleaning needed.

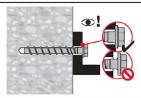
 $h_1 = h_{nom} + 10 \text{ mm}$

Diamond coring with DD-EC1 or DD-30W size 10 to 14

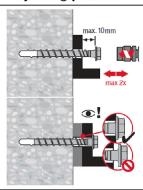
Cleaning needed in all installation directions.


 $h_1 = h_{nom} + 10 \text{ mm}$

Hilti screw anchor HUS4	
Intended use Installation instructions	Annex B7


Fastener setting without adjustment

Setting by impact screw driver


Setting parameters listed in Table B4 to B6

Setting check

Fastener setting with adjustment

Adjusting process

A screw can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10 mm. The final embedment depth after adjustment process must be larger or equal than h_{nom2} or h_{nom3} .

Hilti screw anchor HUS4

Intended use
Installation instructions

Annex B8

Table C1: Essential characteristics under static and quasi-static load in concrete for HUS4 size 8 and 10

Fastener size HUS4					. 8		10			
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth		h _{nom}	[mm]	40	60	70	55	75	85	
Adjustme	nt								•	
Total max. adjustmen	thickness of tlayers	t _{adj}	[mm]	-	10	10	-	10	10	
Max. numl	per of adjustments	na	[-]	-	2	2	-	2	2	
Steel failu	re for tension load									
Characteri	stic resistance	N _{Rk,s}	[kN]		36,0			55,0		
Partial fact	tor	γMs,N ¹⁾	[-]			1,	,5			
Pull-out fa	ailure									
	stic resistance in concrete C20/25	$N_{Rk,p}$	[kN]		$\geq N^0_{Rk,c}^{3)}$		13	22	≥ N ⁰ Rk,c ³⁾	
	stic resistance in oncrete C20/25	$N_{Rk,p}$	[kN]	5,5 ≥ N ⁰ _{Rk,c} ³⁾						
Increasing $N_{Rk,p} = N_{Ri}$	factor for _{k,p(C20/25)} * Ψ _c	Ψc	[-]		$(f_{ck}/20)^{0.5}$					
Concrete	cone and splitting fa	ilure								
Effective e	mbedment depth	$h_{\text{ef}}^{2)}$	[mm]	30,6	47,6	56,1	42,5	59,5	68,0	
Factor	Uncracked	k _{ucr,N}	[-]	11,0						
for	Cracked	$k_{\text{cr},N}$	[-]	7,7						
Concrete	Edge distance	Ccr,N	[mm]	1,5 h _{ef}						
cone failure	Spacing	S _{cr,N}	[mm]	3 h _{ef}						
Characteristic resistance N ⁰ Rk,sp [kN]		[kN]	N _{Rk,p}							
Splitting	Edge distance	Ccr,sp	[mm]	1,5 h _{ef} 1,65 h _{ef}						
failure	Spacing	S _{cr,sp}	[mm]		3 h _{ef} 3,3 h _{ef}					
Robustnes	SS	γinst	[-]		1,0		1,2	1	,0	

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	Annex C1
Performances Essential characteristics under static and quasi-static load in concrete	

 $^{^{2)}}$ In case $h_{nom} > h_{nom1}$ and $< h_{nom3}$ the actual h_{ef} for concrete failure can be calculated according to: $h_{ef} = 0.85 * (h_{nom} - 0.5 * h_t)$

³⁾ N⁰_{Rk,c} according to EN 1992-4:2018

Table C1 continued

Fastener size HUS4				8			10	
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth	h _{nom}	[mm]	40	60	70	55	75	85
Steel failure for shear load								
Characteristic resistance	$V^0_{Rk,s}$	[kN]	18	3,8	21,9	28	3,8	32,0
Partial factor	γMs,v ¹⁾	[-]	1,25					
Ductility factor	k ₇	[-]	0,8					
Characteristic resistance	M ⁰ Rk,s	[Nm]		32			64	
Concrete pry-out failure								
Pry-out factor	k ₈	[-]	1,0	2	,0	1,0	2	,0
Concrete edge failure								
Effective length of fastener	lf	[mm]	40	60	70	55	75	85
Outside diameter of fastener	d _{nom}	[mm]	8 10					

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	Annex C2
Performances Essential characteristics under static and quasi-static load in concrete	,Ox C2

Table C2: Essential characteristics under static and quasi-static load in concrete for HUS4 size 12 to 16

Fastener	size HUS4		-		12			14		1	6
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Nominal e	mbedment depth	h _{nom}	[mm]	60	80	100	65	85	115	85	130
Adjustme	nt										
Total max. adjustmen	thickness of tlayers	t _{adj}	[mm]	-	10	10	-	10	10	-	-
Max. numl	per of adjustments	na	[-]	-	2	2	-	2	2	-	-
Steel failu	re for tension load	I									
Characteri	stic resistance	N _{Rk,s}	[kN]		79,0			101,5		10	7,7
Partial fact	tor	γ _{Ms,N} 1)	[-]				1	,5			
Pull-out fa	ailure										
uncracked	stic resistance in concrete C20/25	$N_{Rk,p}$	[kN]		$\geq N^0 R_{k,c}^{3)}$				22	46	
	stic resistance in oncrete C20/25	$N_{Rk,p}$	[kN]	10,0	10,0 $\geq N^0_{Rk,c^3}$ 16					32	
Increasing N _{Rk,p} = N _{RI}	factor for k,p(C20/25) * Ψc	Ψc	[-]				(f _{ck} /2	20) ^{0,5}			
Concrete	cone and splitting	failure									
Effective e	mbedment depth	h _{ef} ²⁾	[mm]	45,9	62,9	79,9	49,3	66,3	91,8	66,6	104,9
Factor	Uncracked	k _{ucr,N}	[-]				1	1,0			
for	Cracked	$k_{\text{cr},N}$	[-]				7	7,7			
Concrete	Edge distance	C _{cr} ,N	[mm]				1,5	5 h _{ef}			
cone failure	Spacing	Scr,N	[mm]	3 hef							
Characteri	stic resistance	N ⁰ _{Rk,sp}	[kN]	N _{Rk,p}							
Splitting	Edge distance	Ccr,sp	[mm]		1,65 h _{ef}				1,60 h _{ef}		
failure	Spacing	S _{cr,sp}	[mm]		3,30 h _{ef}				3,20 h _{ef}		
Robustnes	SS	γinst	[-]				1	,0			

Hilti screw anchor HUS4	Annex C3
Performances Essential characteristics under static and quasi-static load in concrete	73% 33

 $^{^{1)}}$ In absence of other national regulations. $^{2)}$ In case h_{nom} > h_{nom1} and < h_{nom3} the actual h_{ef} for concrete failure can be calculated according to: h_{ef} = 0,85 * (h_{nom} - 0,5 * h_{t}) $^{3)}$ $N^{0}_{\text{Rk,c}}$ according to EN 1992-4:2018

Table C2 continued

Fastener size HUS4			12			14			16	
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Nominal embedment depth	h _{nom}	[mm]	60	80	100	65	85	115	85	130
Steel failure for shear load										
Characteristic resistance	$V^0_{Rk,s}$	[kN]	38	3,9	44,9	55	6	2	65,1	73,1
Partial factor	γMs,v ¹⁾	[-]	1,25							
Ductility factor	k ₇	[-]	0,8							
Characteristic resistance	M ⁰ Rk,s	[Nm]		125			186		24	40
Concrete pry-out failure										
Pry-out factor	k ₈	[-]				2	,0			
Concrete edge failure										
Effective length of fastener	lf	[mm]	60	80	100	65	85	115	85	130
Outside diameter of fastener	d _{nom}	[mm]	12 14			1	6			

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	Annex C4
Performances Essential characteristics under static and quasi-static load in concrete	

Table C3: Essential characteristics for seismic performance category C1 in concrete

Fastener size HUS4			w	3	1	0	12		14	
			h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}
Nominal embedment depth	h _{nom}	[mm]	60	70	75	85	80	100	85	115
Steel failure for tension and	shear load							•		
Characteristic resistance	N _{Rk,s,C1}	[kN]	36	5,0	55	5,0	79	9,0	10	1,5
Partial factor	γMs,N ¹⁾	[-]				1	,5			
Characteristic resistance	$V_{Rk,s,C1}$	[kN]	18	3,8	26	6,7	38	3,9	22,5	34,5
Partial factor	$\gamma_{\text{Ms},\text{V}^{1)}}$	[-]				1,	25			
Partial factor	$lpha_{ extsf{gap}}$	[-]				0	,5			
Pull-out failure										
Characteristic resistance in cracked concrete	$N_{Rk,p,C1}$	[kN]	≥ N ⁰ Rk,c ³⁾							
Concrete cone failure										
Effective embedment depth	$h_{\text{ef}}^{2)}$	[mm]	47,6	56,1	59,5	68,0	62,9	79,9	66,3	91,8
Edge distance	C _{cr} ,N	[mm]				1,5	h _{ef}			
Spacing	Scr,N	[mm]				3	h _{ef}			
Robustness	γinst	[-]				1	,0			
Concrete pry-out failure										
Pry-out factor	k ₈	[-]	2,0							
Concrete edge failure										
Effective length of fastener	lf	[mm]	60	70	75	85	80	100	85	115
Outside diameter of fastener	d _{nom}	[mm]	8	3	1	0	1	2	1	4

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	Annex C5
Performances Essentials characteristics for seismic performance category C1 in concrete	

 $^{^{2)}}$ In case h_{nom} > h_{nom2} and < h_{nom3} the actual h_{ef} for concrete failure can be calculated according to "h_{ef} = 0.85 * (h_{\text{nom}} - 0.5 * h_t) $^{3)}$ $N^{0}_{\text{Rk,c}}$ according to EN 1992-4:2018

Table C3 continued

Fastener si	ze HUS4			1	6
				h _{nom1}	h _{nom2}
Nominal emb	edment depth	h _{nom}	[mm]	85	130
Steel failure	for tension and	shear load			
Characteristic	c resistance	N _{Rk,s,C1}	[kN]	10	7,7
Partial factor		γMs,N ¹⁾	[-]	1	,5
Characteristic	c resistance	$V_{Rk,s,C1}$	[kN]	42,9	25,3
Partial factor		γ _{Ms,V} 1)	[-]	1,	25
Partial factor		$lpha_{ t gap}$	[-]	0,5	
Pull-out failu	ıre				
	Characteristic resistance in cracked concrete		[kN]	7,5	19,0
Concrete co	ne failure				
Effective emb	pedment depth	$h_{\text{ef}}^{2)}$	[mm]	66,6	104,9
Concrete	Edge distance	C _{cr,N}	[mm]	1,5	h _{ef}
cone failure	Spacing	Scr,N	[mm]	3	h _{ef}
Robustness		γinst	[-]	1	,0
Concrete pr	y-out failure				
Pry-out facto	r	k ₈	[-]	2,0	
Concrete ed	ge failure				
Effective leng	th of fastener	If	[mm]	85	130
Outside diam	eter of fastener	d _{nom}	[mm]	16	

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	Annex C6
Performances Essentials characteristics for seismic performance category C1 in concrete	, .

 $^{^{2)}}$ In case $h_{nom} > h_{nom2}$ and $< h_{nom3}$ the actual h_{ef} for concrete failure can be calculated according to " $h_{ef} = 0.85$ * ($h_{nom} - 0.5$ * h_{t})

Table C4: Essential characteristics under fire exposure in concrete for HUS4-H

Fastener size	astener size HUS4-H (F)				. 8		10			
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embed	ment depth	h _{nom}	[mm]	40	60	70	55	75	85	
Steel failure fo	r tension and	shear load (F _{Rk,s,fi} = N _f	Rk,s,fi = VRk,	s,fi)			•		
	R30	F _{Rk,s,fi}	[kN]		2,6		4,1	4	,2	
	R60	F _{Rk,s,fi}	[kN]		1,9		3,1	3	,1	
	R90	F _{Rk,s,fi}	[kN]		1,2		2,2	2	,3	
Characteristic	R120	F _{Rk,s,fi}	[kN]		0,9		1,5	1	,7	
resistance	R30	M^0 Rk,s,fi	[Nm]		2,3		4,8	4	,9	
	R60	M^0 _{Rk,s,fi}	[Nm]		1,7		3,6	3	,7	
	R90	M^0 Rk,s,fi	[Nm]		1,1		2,6	2	2,7	
	R120	M ⁰ Rk,s,fi	[Nm]		0,8		1,8	1,9		
Pull-out failure			•					•		
Characteristic	R30 R60 R90	$N^0_{Rk,p,fi}$	[kN]	1,3	2,8	3,6	2,3	3,9	4,7	
resistance	R120	$N^0_{Rk,p,fi}$	[kN]	1,0	2,2	2,8	1,9	3,1	3,7	
Concrete cone	failure								•	
Characteristic resistance	R30 R60 R90	N^0 Rk,c,fi	[kN]	0,8	2,6	4,0	2,0	4,7	6,5	
i esistance	R120	N^0 Rk,c,fi	[kN]	0,7	2,1	3,2	1,6	3,7	5,2	
Edge distance										
R30 to R120		C _{Cr,fi}	[mm]			2	h _{ef}			
In case of fire at	ttack from mor	e than one si	de, the min	imum edge	e distance sh	nall be ≥ 300) mm			
Fastener spaci	ng									
R30 to R120		S _{cr,fi}	[mm]			2	h _{ef}			
Concrete pry-o	ut failure		•							
R30 to R120		k ₈	[-]	1,0 2,0 1,0 2,0					,0	

Hilti screw anchor HUS4	Annex C7
Performances Essential characteristics under fire exposure in concrete	7

Table C4 continued

Fastener size	HUS4-H (F))			12			14		1	6
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Nominal embedn	nent depth	h _{nom}	[mm]	60	80	100	65	85	115	85	130
Steel failure for	tension and	shear load (F _{Rk,s,fi} = N	I _{Rk,s,fi} = \	/ _{Rk,s,fi})		•				
	R30	F _{Rk,s,fi}	[kN]	7,5	7,6	7,6	10,3	10,4	10,5	10,6	10,7
	R60	F _{Rk,s,fi}		5,5	5,7	5,8	7,7	7,9	8,0	8,1	8,2
Characteristic resistance	R90	F _{Rk,s,fi}		3,7	3,9	4,1	5,2	5,6	5,8	5,7	5,9
	R120	F _{Rk,s,fi}		2,8	3,0	3,1	3,9	4,2	4,4	4,3	4,5
	R30	M ⁰ Rk,s,fi		11,4	11,6	11,6	18,9	19,2	19,3	23,7	23,9
	R60	$M^0_{Rk,s,fi}$		8,4	8,8	8,9	14,1	14,6	14,8	18,1	18,3
	R90	M^0 Rk,s,fi		5,7	6,0	6,2	9,5	10,2	10,7	12,7	13,2
	R120	$M^0_{Rk,s,fi}$		4,3	4,6	4,7	7,2	7,7	8,1	9,6	10,0
Pull-out failure					•		•	l			
Characteristic resistance	R30 R60 R90	N^0 Rk,c,fi	[kN]	2,6	4,2	6,1	2,9	4,5	7,5	4,6	8,7
Tesistance	R120	$N^0_{Rk,c,fi}$	[kN]	2,1	3,4	4,9	2,3	3,6	6,0	3,7	7,0
Concrete cone t	ailure										
Characteristic resistance	R30 R60 R90	N^0 Rk,c,fi	[kN]	2,4	5,4	9,8	2,9	6,1	13,9	6,2	19,4
resistance	R120	$N^0_{Rk,c,fi}$	[kN]	1,9	4,3	7,8	2,3	4,9	11,1	4,9	15,5
Edge distance											
R30 to R120		C _{cr} ,fi	[mm]				2	h _{ef}			
In case of fire att	ack from mor	re than one si	de, the mi	nimum e	dge dista	ance shal	II be ≥ 30	0 mm			
Fastener spacin	ıg										
R30 to R120		S _{cr,fi}	[mm]				2	Ocr,fi			
Concrete pry-ou	ıt failure										
R30 to R120 k ₈ [-] 2,0											

Hilti screw anchor HUS4	Annex C8
Performances Essential characteristics under fire exposure in concrete	7

Table C5: Essential characteristics under fire exposure in concrete for HUS4-C

Fastener size H	IUS4-C				8		10			
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedm	ent depth	h _{nom}	[mm]	40	60	70	55	75	85	
Steel failure for t	ension and	shear load (F _{Rk,s,fi} = N	I _{Rk,s,fi} = V _{Rk,}	s,fi)			•		
	R30	F _{Rk,s,fi}	[kN]		0,5		1,0			
_	R60	F _{Rk,s,fi}	[kN]		0,4			0,9		
_	R90	F _{Rk,s,fi}	[kN]	0,3			0,7			
- Characteristic	R120	F _{Rk,s,fi}	[kN]	0,2			0,6			
resistance	R30	M ⁰ Rk,s,fi	[Nm]		0,4			1,2		
_	R60	M ⁰ Rk,s,fi	[Nm]		0,3			1,0		
_	R90	$M^0_{Rk,s,fi}$	[Nm]		0,2			0,8		
_	R120	M ⁰ Rk,s,fi	[Nm]		0,2			0,6		
Pull-out failure										
Characteristic resistance	R30 R60 R90	$N_{Rk,p,fi}$	[kN]	1,3	2,8	3,6	2,3	3,9	4,7	
_	R120	$N_{Rk,p,fi}$	[kN]	1,0	2,2	2,8	1,9	3,1	3,7	
Concrete cone fa	ailure									
Characteristic resistance	R30 R60 R90	$N^0_{Rk,c,fi}$	[kN]	0,8	2,6	4,0	2,0	4,7	6,5	
_	R120	N ⁰ Rk,c,fi	[kN]	0,7	2,1	3,2	1,6	3,7	5,2	
Edge distance									•	
R30 to R120		C _{cr} ,fi	[mm]			2	h _{ef}			
In case of fire atta	ck from more	than one sid	le, the mi	nimum edg	e distance s	hall be ≥ 30	0 mm			
Fastener spacing	9									
R30 to R120		Scr,fi	[mm]			2 (Ocr,fi			
Concrete pry-out	failure									
R30 to R120		k ₈	[-]	1,0 2,0 1,0 2,0						
The anchorage de	epth shall be	increased for	wet cond	rete by at I	east 30 mm	compared to	the given	value		

Hilti screw anchor HUS4	Annex C9
Performances Essential characteristics under fire exposure in concrete	75.

Table C6: Essential characteristics under fire exposure in concrete for HUS4-A

Fastener size H	IUS4-A (F)				10		14			
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedm	ent depth	h _{nom}	[mm]	55	75	85	65	85	115	
Steel failure for t	ension and	shear load (F _{Rk,s,fi} = N	Rk,s,fi = VRk,	s,fi)					
	R30	$F_{Rk,s,fi}$	[kN]	4,2			8,4			
_	R60	$F_{Rk,s,fi}$	[kN]		3,3			6,8		
_	R90	$F_{Rk,s,fi}$	[kN]		2,5			5,1		
- Characteristic	R120	F _{Rk,s,fi}	[kN]		2,1			4,3		
resistance	R30	$M^0_{Rk,s,fi}$	[Nm]		4,8			15,4		
_	R60	M^0 Rk,s,fi	[Nm]		3,8			12,4		
_	R90	$M^0_{Rk,s,fi}$	[Nm]		2,9			9,3		
_	R120	M^0 Rk,s,fi	[Nm]		2,4			7,8		
Pull-out failure										
Characteristic resistance	R30 R60 R90	$N_{Rk,p,fi}$	[kN]	2,3	3,9	4,7	2,9	4,5	7,5	
_	R120	$N_{Rk,p,fi}$	[kN]	1,9	3,1	3,7	2,3	3,6	6,0	
Concrete cone fa	ailure									
Characteristic resistance	R30 R60 R90	N ⁰ _{Rk,c,fi}	[kN]	2,0	4,7	6,5	2,9	6,1	13,9	
_	R120	$N^0_{Rk,c,fi}$	[kN]	1,6	3,7	5,2	2,3	4,9	11,1	
Edge distance										
R30 to R120		C _{cr} ,fi	[mm]	2 h _{ef}						
In case of fire atta	ck from more	e than one sid	de, the mir	nimum edg	e distance s	hall be ≥ 30	0 mm			
Fastener spacing	g									
R30 to R120		Scr,fi	[mm]			2 (Ocr,fi			
Concrete pry-ou	t failure									
R30 to R120		k ₈	[-]	1,0			2,0			
The anchorage de	epth shall be	increased for	wet conc	rete by at l	east 30 mm	compared to	the given v	/alue		

Hilti screw anchor HUS4	Annex C10
Performances Essential characteristics under fire exposure in concrete	, amox or c

Table C7: Displacements under tension loads

Fastener size	Fastener size HUS4				8		10		
-				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embed	dment depth	h _{nom}	[mm]	40	60	70	55	75	85
Cracked	Tension Load	N	[kN]	2,6	5,4	6,9	3,8	7,5	8,6
concrete C20/25 to		δ_{N0}	[mm]	0,1	0,3	0,4	0,2	0,4	0,4
C50/60	Displacement	δ _{N∞}	[mm]	0,3	0,4	0,4	0,7	0,7	0,9
Uncracked	Tension Load	N	[kN]	3,7	7,1	9,1	5,2	10,5	12,2
concrete C20/25 to	Dianlacement	δ_{N0}	[mm]	0,1	0,2	0,2	0,1	0,3	0,3
C50/60	Displacement	δ _{N∞}	[mm]	0,3	0,4	0,4	0,7	0,7	0,9

Fastener size	Fastener size HUS4				12			14	14 16		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Nominal embed	lment depth	h _{nom}	[mm]	60	80	100	65	85	115	85	130
Cracked	Tension Load	N	[kN]	5,1	8,2	11,7	5,7	8,6	14,4	8,7	16,7
concrete C20/25 to	Diaplacement	δ_{N0}	[mm]	0,3	0,4	0,6	0,3	0,4	0,7	0,1	0,4
C50/60	Displacement	δ _{N∞}	[mm]	0,9	0,9	1,2	1,3	1,3	1,5	1,3	1,4
Uncracked	Tension Load	N	[kN]	6,8	10,8	15,5	7,5	11,7	19,1	11,5	22,9
concrete C20/25 to	Diaplacement	δ_{N0}	[mm]	0,2	0,3	0,4	0,2	0,3	0,5	0,4	0,3
C50/60	Displacement	δ _{N∞}	[mm]	0,9	0,9	1,2	1,3	1,3	1,5	1,3	1,4

Table C8: Displacements under shear loads

Fastener size	Fastener size HUS4				8				
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embe	dment depth	h _{nom}	[mm]	40	60	70	55	75	85
Concrete	Shear Load	V	[kN]	10,7	10,7	12,5	16,5	16,5	18,3
C20/25 to	25 to 5	δ_{V0}	[mm]	1,3	1,1	0,9	1,4	1,3	1,0
C50/60	Displacement	δν∞	[mm]	2,0	1,7	1,4	2,1	2,0	1,5

Fastener size HUS4				12			14	16			
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Nominal embed	dment depth	h _{nom}	[mm]	60	80	100	65	85	115	85	130
Concrete	Shear Load	V	[kN]	22,2	22,2	25,7	31,4	35,4	35,4	37,2	41,8
C20/25 to	Dianlacement	δ_{V0}	[mm]	1,6	1,6	0,9	5,3	5,3	4,0	2,3	1,8
C50/60	Displacement	δγ∞	[mm]	2,3	2,4	1,4	7,9	7,9	6,0	3,5	2,7

Hilti screw anchor HUS4	Annex C11
Performances Displacement values in case of static and quasi-static loading	7 miles 611

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-20/0867 vom 2. Dezember 2021

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Deutsches Institut für Bautechnik

Hilti Betonschraube HUS4

Mechanischer Dübel zur Verankerung im Beton

Hilti Aktiengesellschaft Feldkircherstrasse 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

27 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-01-0601, Edition 08/2021

Europäische Technische Bewertung ETA-20/0867

Seite 2 von 27 | 2. Dezember 2021

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z114430.21 8.06.01-714/20

Europäische Technische Bewertung ETA-20/0867

Seite 3 von 27 | 2. Dezember 2021

Besonderer Teil

1 Technische Beschreibung des Produkts

Die Hilti Betonschraube HUS4 ist ein Dübel in den Größen 8, 10, 12, 14 und 16 mm aus galvanisch verzinktem Stahl. Der Dübel wird in ein vorgebohrtes zylindrisches Bohrloch geschraubt. Das Spezialgewinde schneidet während des Setzvorgangs ein Innengewinde in den Verankerungsgrund. Die Verankerung erfolgt durch Formschluss des Spezialgewindes. Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B4 bis B6, Anhang C1 und C3
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C2 und C4
Verschiebungen (statische und quasi-statische Einwirkungen)	Siehe Anhang C11
Charakteristischer Widerstand für die seismische Leistungskategorien C1	Siehe Anhang C5 und C6
Dauerhaftigkeit	Siehe Anhang B1

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhang C7 bis C10

Z114430.21 8.06.01-714/20

Europäische Technische Bewertung ETA-20/0867

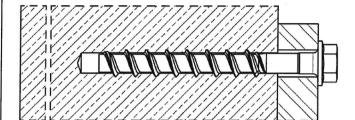
Seite 4 von 27 | 2. Dezember 2021

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330232-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

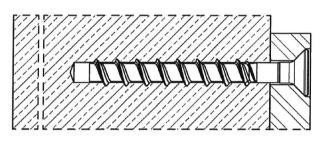
Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

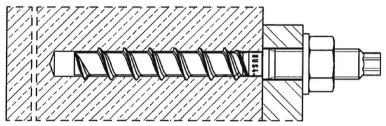

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 2. Dezember 2021 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin Deutsches Institut
für Bautechnik
5

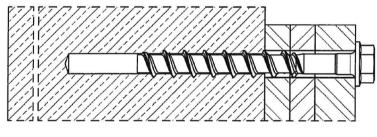


Einbauzustand ohne Adjustierung

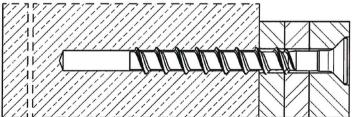


HUS4-H (Ausführung Sechskantkopf Größe 8, 10, 12, 14 und 16)

HUS4-HF (Ausführung Sechskantkopf Größe 8, 10, 14 und 16)


HUS4-C (Ausführung mit Senkkopf Größe 8 and 10)

HUS4-A (Ausführung Außengewinde Größe 10 mit M12 und 14 mit M16)


HUS4-AF (Ausführung Außengewinde Größe 10 mit M12 und 14 mit M16)

Einbauzustand mit Adjustierung - hnom2, hnom3

HUS4-H (Ausführung Sechskantkopf Größe 8, 10, 12 und 14)

HUS4-HF (Ausführung Sechskantkopf Größe 8, 10 und 14)

HUS4-C (Ausführung mit Senkkopf Größe 8 and 10)

Hilti Betonschraube HUS4

Produktbeschreibung
Einbauzustand mit und ohne Adjustierung

Anhang A1



Tabelle A1: Schraubenausführungen

Hilti HUS4-H, Größe 8,10, 12, 14 und 16, Ausführung mit Sechskantkopf, galvanisch verzinkt Hilti HUS4-HF, Größe 8,10, 14 und 16, Ausführung mit Sechskantkopf, mehrlagige Beschichtung

Hilti HUS4-C, Größe 8 und 10, Ausführung mit Senkkopf, galvanisch verzinkt

Hilti HUS4-A, Größe 10 mit Außengewinde M12 und Größe 14 mit Außengewinde M16, galvanisch verzinkt Hilti HUS4-AF, Größe 10 mit Außengewinde M12 und Größe 14 mit Außengewinde M16, mehrlagige Beschichtung

Hilti Betonschraube HUS4	Anhang A2
Produktbeschreibung HUS4 Schraubenausführungen	Aimang Az

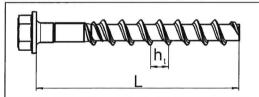
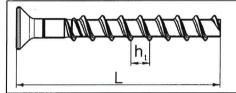


Tabelle A2: Material

Teil	Material
HUS4 Betonschraube	Kohlenstoffstahl
(alle Ausführungen in Tabelle A1)	Bruchdehnung A₅ ≤ 8%

Tabelle A3: Abmessungen und Kopfmarkierung HUS4-H(F)

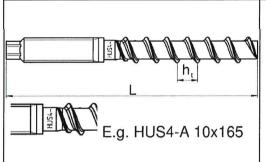
Tabelle As.	ADIII	.000	<u> </u>	,,, M.		7711111	aiic	- Carrie	,	9	/·/					
Größe HUS4-				H(F) 8 H(F) 10		H 12		H(F) 14		H(F) 16						
Nomineller Dübeldurchmesser	d	[mm]	8		10		12		14			16				
Gewindesteigung	ht	[mm]		8	10		12		14			13,2				
Länge des Dübels			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
im Beton	h_{nom}	[mm]	40	60	70	55	75	85	60	80	100	65	85	115	85	130
Effektive Verankerungstiefe	h _{ef}	[mm]		$h_{ef} = 0.85 * (h_{nom} - 0.5 * h_t) \le h_{ef,max}$												
Grenze der effektiven Verankerungstiefe	h _{ef,max}	[mm]		56,1 68,0			79,9			91,8		104,9				
Länge der Schraube min / max	L	[mm]	4	15 / 15	0	60 / 305		60 / 305 70 / 150		0	75 / 150			100	/ 205	


HUS4	: Hilti Universal Schraube 4. Generation
H: HF:	Sechskantkopf, galvanisch verzinkt Sechskantkopf, mehrlagige Beschichtung
10:	Nomineller Schraubendurchmesser d [mm]
100:	Länge der Schraube [mm]

Hilti Betonschraube HUS4	- Anhang A3
Produktbeschreibung Material, Abmessungen und Kopfmarkierung	Ailliang A3

Tabelle A4: Abmessungen und Kopfmarkierung HUS4-C

Größe HUS4-		C 8		C 10				
Nomineller Dübeldurchmesser	d	[mm]	8			10		
Gewindesteigung	ht	[mm]	8			10		
Länge des Dübele im Deten			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Länge des Dübels im Beton	h_{nom}	[mm]	40	60	70	55	75	85
Effektive Verankerungstiefe	hef	[mm]	$h_{ef} = 0.85 * (h_{nom} - 0.5 * h_{t}) \le h_{ef,max}$					
Grenze der effektiven Verankerungstiefe	h _{ef,max}	[mm]	1] 56,1 68,0					
Länge der Schraube min / max	L	[mm]	55 / 85 70 / 120					



HUS4: Hilti Universal Schraube 4. Generation					
C: Senkkopf, galvanisch verzinkt					
10:	Nomineller Schraubendurchmesser d [mm]				
100:	Länge der Schraube [mm]				

Tabelle A5: Abmessungen und Markierung HUS4-A

Größe HUS4-				A(F) 10		A(F) 14			
Nomineller Dübeldurchmesser	d	[mm]	10			14			
Außengewindeanschluss			M12				M16		
Gewindesteigung	ht	[mm]	10			14			
Lines des Dübeleies Deter			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Länge des Dübels im Beton	h _{nom}	[mm]	55	75	85	65	80	115	
Effektive Verankerungstiefe	hef	[mm]	$h_{ef} = 0.85 * (h_{nom} - 0.5 * h_1) \le h_{ef,max}$						
Grenze der effektiven Verankerungstiefe	h _{ef,max}	[mm]	68,0 91,8						
Länge der Schraube min / max	L,	[mm]	120 / 165 155 / 205						

HUS4:	Hilti Un	Hilti Universal Schraube 4. Generation							
A: AF:	Außeng Außeng	Außengewinde, galvanisch verzinkt Außengewinde, mehrlagige Beschichtung							
10:	Nomine	Nomineller Schraubendurchmesser d [mm]							
165:	Länge	Länge der Schraube L [mm]							
8:	C-Stah	C-Stahl							
K:	Länger	Längenidentifikation HUS4-A 10x165							
G	ı	I K J L N							
10x120	10x140	10x165	14x155	14x185	14x205				

Hilti Betonschraube HUS4	Anhang A4
Produktbeschreibung Abmessungen und Kopfmarkierung	Amang A4

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

- · Statische und quasi-statische Belastung
- Seismische Einwirkung C1
- Brandbeanspruchung

Verankerungsgrund:

- Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013+A1:2016.
- Festigkeitsklasse C20/25 bis C50/60 entsprechend EN 206:2013+A1:2016.
- Gerissener oder ungerissener Beton.

Anwendungsbedingungen (Umweltbedingungen):

Bauteile unter den Bedingungen trockener Innenräume.

Design:

- Die Befestigungen müssen unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs bemessen werden.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit:
 EN 1992-4:2018 und EOTA Technical Report TR 055, Fassung Februar 2018
- Bei Anforderungen an den Brandschutz ist sicherzustellen, dass lokale Betonabplatzungen vermieden werden.

Installation:

- Der Verankerung durch entsprechend geschulten Personals und unter der Aufsicht des Bauleiters.
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.
- · Nach der Montage darf ein leichtes Weiterdrehen des Dübels nicht möglich sein.
- Der Dübelkopf (HUS4-H und HUS4-C) muss am Anbauteil anliegen und darf nicht beschädigt sein.

Hilti Betonschraube HUS4

Verwendungszweck
Spezifikationen

Anhang B1

Spezifizierung des Verwendungszwecks: Bohren und reinigen

Tabelle B1: Statische und quasi-statische Lasten

HUS4		Dübelgröße und Einbindetiefe h _{nom}				
Gerissener und ungerissener Beton						
Hammerbohren (HD) ¹⁾	gereinigt ungereinigt	- @	Größe 8 bis 16 mit allen h _{nom} Größe 8 bis 14 mit allen h _{nom}			
Hammerbohren mit Hilti Hohlbohrern TE-CD (HDB) 1)			Größe 12 und 14 mit allen h _{nom}			
Ungerissener Beton						
Diamantbohren (DD) DD30-W handgeführt un DD-EC1 handgeführt	d with Bohrständer	€ 🕀 🕽	Größe 10 bis 14 mit allen hnom			

¹⁾ Adjustieren ist mit den Größen 8 bis 14 bei h_{nom2+3} erlaubt.

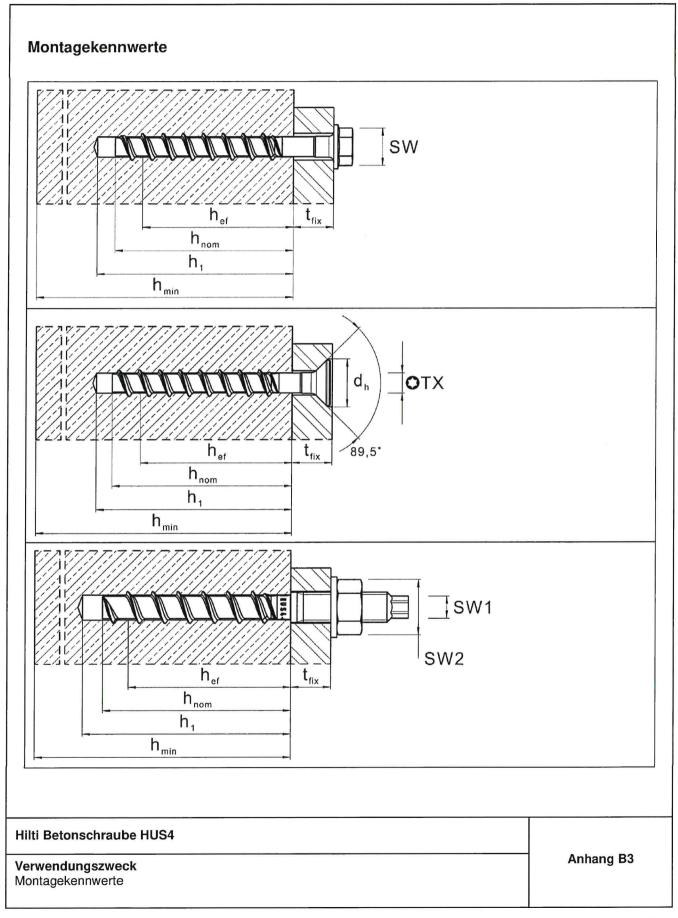
Tabelle B2: Seismische Einwirkung C1

HUS4			Dübelgröße und Einbindetiefe h _{nom}
Hammerbohren (HD) ¹⁾ gereinigt		_ =====================================	Größe 8 bis 14 mit h _{nom 2+3} Größe 16 mit h _{nom1+2}
	ungereinigt		Größe 8 bis 14 mit h _{nom2+3}
Hammerbohren mit Hilti Hohlbohrern TE-CD (HDB) 1)			Größe 12 und 14 mit h _{nom2+3}

¹⁾ Adjustieren ist mit den Größen 8 bis 14 bei h_{nom2+3} erlaubt.

Tabelle B3: Statische und quasi-statische Lasten unter Brandbeanspruchung

HUS4		Dübelgröße und Einbindetiefe h _{nom}
Hammerbohren (HD) ¹⁾	gereinigt ungereinigt	Größe 8 bis 16 mit allen h _{nom} Größe 8 bis 14 mit allen h _{nom}
Hammerbohren mit Hilti TE-CD (HDB) 1)	Hohlbohrern	Größe 12 und 14 mit allen hnom


¹⁾ Adjustieren ist mit den Größen 8 bis 14 bei h_{nom2+3} erlaubt.

Hilti Betonschraube HUS4

Verwendungszweck
Spezifikationen

Anhang B2

Größe HUS4				8		10		
Тур			H, C			H, C, A		
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Länge des Dübels im Beton	h _{nom}	[mm]	40	60	70	55	75	85
Bohrernenndurchmesser	d₀	[mm]		8			10	
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]		8,45			10,45	
Durchmesser der Diamantbohrkrone	d _{cut} ≤	[mm]		-:			9,9	
Durchgangsloch im Anbauteil Durchsteckmontage	d _f ≤	[mm]		12			14	
Durchgangsloch im Anbauteil Vorsteckmontage (A-type)	d₁≤	[mm]		₹*			14	
Schlüsselweite (H, HF-type)	SW	[mm]		13			15	
Schlüsselweite für den Sechskantkopf (A-type)	SW1	[mm]	-			8		
Schlüsselweite für die Mutter (A-type)	SW2	[mm]	-			19		
Maximales Anziehdrehmoment (A-type)	max T _{inst}	[Nm]	-			20		
Torx-Größe (C-type)	TX	*	45			50		
Durchmesser Senkkopf	dh	[mm]	18			21		
Bohrlochtiefe für gereinigte Bohrlöcher Hammerbohren, Diamantbohren,	h₁ ≥	[mm]	(h _{nom} + 10 mm)					
oder ungereinigt Hammerbohren Überkopf			50	70	80	65	85	95
Bohrlochtiefe für ungereinigte Bohrlöcher	h₁ ≥	[mm]	(h _{nom} + 10 mm) + 2 * d ₀					
Hammerbohren in Wand und Bodenposition			66	86	96	85	105	115
Bohrlochtiefe (mit Adjustierung) für gereinigte Bohrlöcher. Hammerbohren, Diamantbohren,	h ₁ ≥	[mm]	(h _{nom} + 20 mm)					
oder ungereinigt Hammerbohren Überkopf	<u>-</u>	[mmi]	-	80	90	-	95	105
Bohrlochtiefe (mit Adjustierung) für ungereinigte Bohrlöcher	h ₁ ≥	[mm]	(h _{nom} + 20 mm) + 2 * d ₀					
Hammerbohren in Wand und Bodenposition	III S	[]	-	96	106	-	115	125
Minimale Dicke des Betonbauteils	h _{min} ≥	[mm]			(h ₁ + 3	0 mm)		
willimale bloke des betombattens	TIMIN =	[IIIIII]	80	100	120	100	130	140
Minimaler Achsabstand	S _{min} ≥	[mm]	35		40			
Minimaler Randabstand	C _{min} ≥	[mm]	35 40					
Hilti Setzgerät 1)			SIW 6 AT-A22 SIW 6 AT-A SIW 6.2 AT-A22 1. Gang SIW 8.1 AT 1.			√ 6.2 AT-A	22 22 Sang	

¹⁾ Installation mit anderem Tangential-Schlagschrauber bei gleichwertiger Leistung ist zulässig.

Hilti Betonschraube HUS4	
Verwendungszweck Montagekennwerte	Anhang B4

Größe HUS4				12			14	
Тур			н				H, A	
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom} s
Länge des Dübels im Beton	h _{nom}	[mm]	60	80	100	65	85	115
Bohrernenndurchmesser	do	[mm]		12			14	
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]		12,50			14,50	
Durchmesser der Diamantbohrkrone	d _{cut} ≤	[mm]		12,2			-	
Durchgangsloch im Anbauteil Durchsteckmontage	d _f ≤	[mm]		16			18	
Durchgangsloch im Anbauteil Vorsteckmontage (A-type)	d₁≤	[mm]		-			18	
Schlüsselweite (H, HF-type)	SW	[mm]	17			21		
Schlüsselweite für den Sechskantkopf (A-type)	SW1	[mm]		-			12	
Schlüsselweite für die Mutter (A-type)	SW2	[mm]	-				24	
Maximales Anziehdrehmoment (A-type)	max T _{inst}	[Nm]	- 80					
Bohrlochtiefe für gereinigte Bohrlöcher	h₁ ≥	[mm]	(h _{nom} + 10 mm)					
Hammerbohren, Diamantbohren, oder ungereinigt Hammerbohren Überkopf			70	90	110	75	95	125
Bohrlochtiefe für ungereinigte Bohrlöcher	h >	[mm]	(h _{nom} + 10 mm) + 2 * d ₀					
Hammerbohren in Wand und Bodenposition	h ₁ ≥		94	114	134	103	123	153
Bohrlochtiefe (mit Adjustierung) für gereinigte	L ~	[]	(h _{nom} + 20 mm)					
Bohrlöcher. Hammerbohren, Diamantbohren, oder ungereinigt Hammerbohren Überkopf	h₁ ≥	[mm] 	n=	100	120	s = :	105	135
Bohrlochtiefe (mit Adjustierung) für	L .	[1	(h _{nom} + 20 mm) + 2 * d ₀					
ungereinigte Bohrlöcher Hammerbohren in Wand und Bodenposition	h₁ ≥	[mm] }	-	124	144	-	133	163
Att in the District Part of th	ъ .	f	(h ₁ + 30 mm)					
Minimale Dicke des Betonbauteils	h _{min} ≥	[mm] }	110	130	150	120	160	200
Minimaler Achsabstand	S _{min} ≥	[mm]	50			60		
Minimaler Randabstand	C _{min} ≥	[mm]		50			60	
Hilti Setzgerät 1)			SIW 22T-A SIW 6.2 AT-A22 SIW 8.1 AT SIW 9-A22 SIW 9-A22 SIW 9-A22			\22 「		

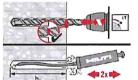
¹⁾ Installation mit anderem Tangential-Schlagschrauber bei gleichwertiger Leistung ist zulässig.

Hilti Betonschraube HUS4	
Verwendungszweck Montagekennwerte	Anhang B5

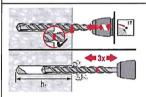
Tabelle B6: Montagekenny	verte HUS	4 size 1	16		
Größe HUS4			16		
Тур			н		
			h _{nom1}	h _{nom2}	
Länge des Dübels im Beton	h_{nom}	[mm]	85	130	
Bohrernenndurchmesser	do	[mm]	16		
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]	16,50		
Durchgangsloch im Anbauteil Durchsteckmontage	d₁≤	[mm]	20		
Schlüsselweite	SW	[mm]	24		
Bohrlochtiefe für gereinigte Bohrlöcher	h₁≥	[mm]	(h _{nom} + 10 mm)		
Hammerbohren	II1 ≥	[mm]	95	140	
Minimale Dicke des Betonbauteils	h _{min} ≥	[mm]	130	195	
Minimum spacing	S _{min} ≥	[mm]	90		
Minimaler Achsabstand	C _{min} ≥	[mm]	65		
Hilti Setzgerät ¹⁾			SIW 22 SIW 6.2 A SIW 8.7 SIW 9-	AT-A22 1 AT	

¹⁾ Installation mit anderem Tangential-Schlagschrauber bei gleichwertiger Leistung ist zulässig.

Hilti Betonschraube HUS4	
Verwendungszweck	Anhang B6
Montagekennwerte	


Setzanweisung

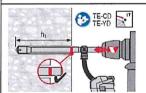
Bohrlocherstellung und Reinigung


Hammerbohren (HD	alle Größen (Größe	16 nur mit Reinigung)

	-,
annin	WL B
h ₁	
Danama	1
	All St

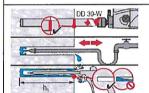
Erforderliche Bohrtiefe h₁ für Durchsteckmontage oder Vorsteckmontage auf dem Bohrer oder der Bohrkrone markieren.
Details zur Bohrlochtiefe h₁ siehe Tabelle B4 bis B6.

Mit Reinigung des Bohrlochs zur Montage in Wand oder Bodenposition. Bohrtiefe $h_1 = h_{\text{nom}} + 10 \text{ mm}$.



Es ist keine Reinigung erforderlich, wenn vertikal nach oben gebohrt wird.

Es ist keine Reinigung erforderlich, wenn vertikal nach unten oder horizontal gebohrt und nach dem Bohren dreimal gelüftet¹⁾ wird. Die Bohrtiefe muss um zusätzlich 2*d₀ vergrößert werden.

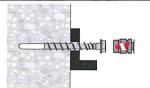

¹⁾ Den Bohrer dreimal aus dem Bohrloch ziehen und wieder hineinschieben, nachdem die empfohlene Bohrlochtiefe h1 erreicht wurde. Dieses Vorgehen soll sowohl im Drehmodus wie auch im Hammermodus der Bohrmaschine durchgeführt werden. Genauere Informationen sind in der relevanten MPII enthalten.

Hammerbohren mit Hilti Hohlbohrer (HDB) TE-CD Größe 12 und 14.

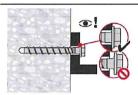
Es ist keine Reinigung erforderlich Bohrtiefe h₁ = h_{nom} + 10 mm

Diamantbohren mit DD-EC1 oder DD-30W Grüße 10 bis 14

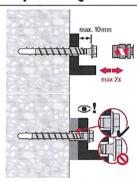
Mit Reinigung des Bohrlochs zur Montage in alle Richtungen. Bohrtiefe $h_1 = h_{nom} + 10 \text{ mm}$


Hilti Betonschraube HUS4

Verwendungszweck Setzanweisung Anhang B7


Setzen des Dübels ohne Adjustierung

Maschinensetzen


Montagekennwerte siehe Tabelle B4 bis B6

Kontrolle der Setzung

Setzen des Dübels mit Adjustierung

Adjustierung

Der Dübel darf maximal zweimal adjustiert werden. Die bei der Adjustierung erfolgte Unterfütterung darf insgesamt maximal 10 mm betragen.

Die erforderliche Setztiefe h_{nom2} oder h_{nom3} muss nach der Adjustierung eingehalten werden.

Hilti Betonschraube HUS4

Verwendungszweck Setzanweisung Anhang B8

Tabelle C1: Wesentliche Merkmale unter statische und quasi-statische Lasten in Beton für HUS4 Größe 8 und 10

Größe H	US4				8			10	
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Länge des	Dübels im Beton	h _{nom}	[mm]	40	60	70	55	75	85
Adjustierung									
Max. Dick	Max. Dicke der Unterfütterung		[mm]	-	10	10	-	10	10
Max. Anza	ahl der Adjustierungen	na	[-]	-	2	2		2	2
Stahlvers	agen unter Zugbeansp	ruchung							
Charakter	istischer Widerstand	N _{Rk,s}	[kN]		36,0			55,0	
Teilsicherl	Teilsicherheitsbeiwert γ _Λ					1,	5		
Herauszie	ehen								
	Charakteristischer Widerstand in ungerissenem Beton C20/25		[kN]		≥ N ⁰ Rk,c ³⁾		13	22	$\geq N^0_{Rk,c^{3)}}$
Charakteristischer Widerstand in gerissenem Beton C20/25		N _{Rk,p}	[kN]	5,5	≥ N ⁰ Rk,c ³⁾				
Erhöhungs $N_{Rk,p} = N_{Rl}$	sfaktor für κ,ρ(C20/25) * Ψc	Ψα	[-]	(f _{ck} /20) ^{0,5}					
Betonaus	bruch und Spalten								
Effektive V	erankerungstiefe	hef ²⁾	[mm]	30,6	47,6	56,1	42,5	59,5	68,0
Faktor	ungerissenen Beton	k _{ucr,N}	[-]	11,0					
für	gerissenen Beton	k _{cr,N}	[-]	7,7					
Beton-	Randabstand	Ccr,N	[mm]	1,5 hef					
ausbruch Achsabstand so		S _{cr,N}	[mm]	3 h _{ef}					
Charakteristischer Widerstand N ⁰ Rk,sp [kN]		N _{Rk,p}							
Spalten	Randabstand	Ccr,sp	[mm]	1,5 h _{ef} 1,65 h _{ef}					
Сраноп	Achsabstand	S _{cr,sp}	[mm]		3 h _{ef} 3,3 h _{ef}				
Robustheit		γinst	[-]		1,0 1,2 1,			0	

¹⁾ Sofern andere nationale Regelungen fehlen.

Hilti Betonschraube HUS4	Anhang C1
Leistungen Wesentliche Merkmale unter statische und quasi-statische Lasten in Beton	3

²⁾ Wenn h_{nom} > h_{nom1} und < h_{nom3} kann das aktuelle h_{ef} für Betonausbruch folgendermaßen berechnet werden: h_{ef} = 0,85 * (h_{nom} - 0,5 * h_t)

3) N⁰_{RK,c} gemäß EN 1992-4:2018

0,8

Tabelle C1 fortgesetzt Größe HUS4 8 10 h_{nom1} h_{nom2} h_{nom3} h_{nom1} h_{nom2} h_{nom3} 75 h_{nom} 40 60 70 55 85 Länge des Dübels im Beton [mm] Stahlversagen unter Querbeanspruchung 32,0 Charakteristischer Widerstand V^0 Rk,s [kN] 18,8 21,9 28,8 1,25 Teilsicherheitsbeiwert $\gamma_{Ms,V^{1)}}$ [-]

Charakteristischer Widers	stand M ⁰ Rk,s	[Nm]		32		64
Betonausbruch auf der	lastabgewandter	n Seite (pr	y-out)			
Pry-out Faktor	kα	[-]	1.0	2.0	1.0	2.0

[-]

Fry-out Faktor	N 8	[-]	1,0	2,0		1,0		,0
Betonkantenbruch								
Wirksame Dübellänge	lf	[mm]	40	60	70	55	75	85
Wirksamer Außendurchmesser	d _{nom}	[mm]	8		8 10			

¹⁾ Sofern andere nationale Regelungen fehlen.

k₇

Duktilitätsfaktor

Hilti Betonschraube HUS4	Anhang C2
Leistungen Wesentliche Merkmale unter statische und quasi-statische Lasten in Beton	7

Tabelle C2: Wesentliche Merkmale unter statische und quasi-statische Lasten in Beton für HUS4 Größe 12 bis 16

Größe H	iröße HUS4			12		14			16		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Länge des	s Dübels im Beton	h _{nom}	[mm]	60	80	100	65	85	115	85	130
Adjustier	ung				•						
Max. Dick	e der Unterfütterung	t _{adj}	[mm]	-	10	10	-	10	10	-	-
Max. Anza	ahl der Adjustierungen	na	[-]	-	2	2	-	2	2	-	-
Stahlvers	agen unter Zugbeansp	ruchung								•	
Charakter	istischer Widerstand	N _{Rk,s}	[kN]		79,0			101,5		10	7,7
Teilsicher	heitsbeiwert	γMs,N ¹⁾	[-]				1	,5		7.0	
Herauszie	ehen										
	istischer Widerstand in nem Beton C20/25	N _{Rk,p}	[kN]	≥ N ⁰ Rk,c ³⁾ 22				46			
	istischer Widerstand in m Beton C20/25	N _{Rk,p}	[kN]	10,0 $\geq N^0_{Hk,c}^{(3)}$ 16 33				32			
Erhöhungs N _{Rk,p} = N _R	sfaktor für k,p(C20/25) * Ψc	Ψο	[-]				(f _{ck} /2	20) ^{0,5}			
Betonaus	bruch und Spalten										
Effektive \	/erankerungstiefe	h _{ef} ²⁾	[mm]	45,9	62,9	79,9	49,3	66,3	91,8	66,6	104,9
Faktor	ungerissenen Beton	k _{ucr,N}	[-]				11	,0			
für	gerissenen Beton	K _{cr,N}	[-]				7	,7			
Beton-	Randabstand	C _{cr,N}	[mm]	1,5 h _{ef}							
ausbruch	Achsabstand	Scr,N	[mm]	3 h _{ef}							
Charakteri	istischer Widerstand	$N^0_{Rk,sp}$	[kN]	N] N _{Rk,p}							
Spalten	Randabstand	Ccr,sp	[mm]	1,65 h _{ef} 1,60 h _{ef}							
- Opailer	Achsabstand	Scr,sp	[mm]	3,30 h _{ef} 3,20 h _{ef}							
Robusthei	t	γinst	[-]				1,	,0			

¹⁾ Sofern andere nationale Regelungen fehlen.

Hilti Betonschraube HUS4	Anhang C3
Leistungen Wesentliche Merkmale unter statische und quasi-statische Lasten in Beton	.

²⁾ Wenn h_{nom} > h_{nom1} und < h_{nom3} kann das aktuelle h_{ef} für Betonausbruch folgendermaßen berechnet werden: h_{ef} = 0,85 * (h_{nom} - 0,5 * h_t)

3) N⁰_{Rk,c} gemäß EN 1992-4:2018

Größe HUS4				12			14		16	
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Länge des Dübels im Beton	h _{nom}	[mm]	60	80	100	65	85	115	85	130
Stahlversagen unter Querbeanspruchung										
Charakteristischer Widerstand	V ⁰ Rk,s	[kN]	38,9 44,9 55 62 65,1				73,1			
Teilsicherheitsbeiwert	γMs,V ¹⁾	[-]	1,25							
Duktilitätsfaktor	k ₇	[-]				0	,8			
Charakteristischer Widerstand	M ⁰ Rk,s	[Nm]		125			186		24	40
Betonausbruch auf der lastabg	ewandten	Seite (p	ry-out)							
Pry-out Faktor	k ₈	[-]	2,0							
Betonkantenbruch										
Wirksame Dübellänge	lf	[mm]	60	80	100	65	85	115	85	130
Wirksamer Außendurchmesser	d _{nom}	[mm]		12 14 16				6		

¹⁾ Sofern andere nationale Regelungen fehlen.

Hilti Betonschraube HUS4	Anhang C4
Leistungen Wesentliche Merkmale unter statische und quasi-statische Lasten in Beton	•

Tabelle C3: Wesentliche Merkmale für die seismische Einwirkung C1 in Beton für HUS4

Größe HUS4			8	3	1	0	12		14	
			h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}
Länge des Dübels im Beton	h _{nom}	[mm]	60	70	75	85	80	100	85	115
Stahlversagen unter Zug und	Querbeans	spruchur	ng		•		•			
Charakteristischer Widerstand	N _{Rk,s,C1}	[kN]	36	5,0	55	5,0	79	9,0	10	1,5
Teilsicherheitsbeiwert	γ _{Ms,N} 1)	[-]				1	,5			
Charakteristischer Widerstand	V _{Rk,s,C1}	[kN]	18	,8	26	5,7	38	3,9	22,5	34,5
Teilsicherheitsbeiwert	γмs,ν ¹⁾	[-]				1,	25			
Teilsicherheitsbeiwert	$lpha_{\sf gap}$	[-]				0	,5			
Herausziehen										
Charakteristischer Widerstand in gerissenem Beton	N _{Rk,p,C1}	[kN]	≥ N ⁰ Rk,c ³⁾							
Betonausbruch										
Effektive Verankerungstiefe	hef ²⁾	[mm]	47,6	56,1	59,5	68,0	62,9	79,9	66,3	91,8
Randabstand	C _{cr,N}	[mm]				1,5	h _{ef}			
Achsabstand	Scr,N	[mm]				3	Nef			
Robustheit	γinst	[-]				1,	0			
Betonausbruch auf der lastabo	gewandten	Seite (p	ry-out)							
Pry-out Faktor	k ₈	[-]	2,0							
Betonkantenbruch									71.90	
Wirksame Dübellänge	lf	[mm]	60	70	75	85	80	100	85	115
Wirksamer Außendurchmesser	d _{nom}	[mm]	8 10 12 14				4			

¹⁾ Sofern andere nationale Regelungen fehlen.

Hilti Betonschraube HUS4	Anhang C5
Leistungen Wesentliche Merkmale für die seismische Einwirkung C1 in Beton	,

²⁾ Wenn h_{nom} > h_{nom1} und < h_{nom3} kann das aktuelle h_{ef} für Betonausbruch folgendermaßen berechnet werden: h_{ef} = 0,85 * (h_{nom} - 0,5 * h_t)

3) N⁰_{Rk,c} gemäß EN 1992-4:2018

Tabelle C3 fortgesetzt

Größe HUS4	16						
			h _{nom1}	h _{nom2}			
Länge des Dübels im Beton	h _{nom}	[mm]	85	130			
Stahlversagen unter Zug und Querbeanspruchung							
Charakteristischer Widerstand	N _{Rk,s,C1}	[kN]	10	7,7			
Teilsicherheitsbeiwert	γмs,N ¹⁾	[-]	1	,5			
Charakteristischer Widerstand	$V_{Rk,s,C1}$	[kN]	42,9	25,3			
Teilsicherheitsbeiwert	γ _{Ms,V} 1)	[-]	1,25				
Teilsicherheitsbeiwert	α_{gap}	[-]	0,5				
Herausziehen							
Charakteristischer Widerstand in gerissenem Beton	N _{Rk,p,C1}	[kN]	7,5	19,0			
Betonausbruch							
Effektive embedment depth	hef ²⁾	[mm]	66,6	104,9			
Randabstand	Ccr,N	[mm]	1,5	h _{ef}			
Achsabstand	Scr,N	[mm]	3	h _{ef}			
Robustheit	γinst	[-]	1,0				
Betonausbruch auf der lastab	gewandter	Seite (p	ry-out)				
Pry-out Faktor	k ₈	[-]	2,0				
Betonkantenbruch							
Wirksame Dübellänge	lf	[mm]	85	130			
Wirksamer Außendurchmesser	d _{nom}	[mm]	16				

¹⁾ Sofern andere nationale Regelungen fehlen.

Hilti Betonschraube HUS4	Anhang C6
Leistungen Wesentliche Merkmale für die seismische Einwirkung C1 in Beton	Aimaing 00

²⁾ Wenn h_{nom} > h_{nom1} und < h_{nom3} kann das aktuelle h_{ef} für Betonausbruch folgendermaßen berechnet werden: h_{ef} = 0,85 * (h_{nom} - 0,5 * h_t)

Tabelle C4:	Wesentliche Merkmale	unter Brandbeansi	pruchung in Beto	n für HUS4-H
I GOOIIO O II	Trocontinone monthmate	dilloi Bidiidbodiio	practically in Dote	

Größe HUS4-H (I	F)				. 8			10	
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Länge des Dübels i	m Beton	h _{nom}	[mm]	40	60	70	55	75	85
Stahlversagen unt	er Zug un	d Querbeans	spruchung	g (F _{Rk,s,fi} = 1	V _{Rk,s,fi} = V _{Rk,}	s,fi)			
	R30	F _{Rk,s,fi}	[kN]		2,6		4,1	4	,2
	R60	F _{Rk,s,fi}	[kN]		1,9		3,1	3	,1
	R90	F _{Rk,s,fi}	[kN]		1,2		2,2	2	,3
Charakteristischer	R120	F _{Rk,s,fi}	[kN]		0,9		1,5	1	,7
Widerstand	R30	M ⁰ Rk,s,fi	[Nm]		2,3		4,8	4	,9
	R60	M ⁰ Rk,s,fi	[Nm]	1,7			3,6	3	,7
	R90	M ⁰ Rk,s,fi	[Nm]		1,1		2,6	2	7
	R120	M ⁰ Rk,s,fi	[Nm]		0,8		1,8	1,9	
Herausziehen									
Charakteristischer Widerstand	R30 R60 R90	N ⁰ Rk,p,fi	[kN]	1,3	2,8	3,6	2,3	3,9	4,7
Widerstand	R120	N ⁰ Rk,p,fi	[kN]	1,0	2,2	2,8	1,9	3,1	3,7
Betonausbruch									
Charakteristischer Widerstand	R30 R60 R90	N ⁰ Rk,c,fi	[kN]	0,8	2,6	4,0	2,0	4,7	6,5
Widerstand	R120	N ⁰ Rk,c,fi	[kN]	0,7	2,1	3,2	1,6	3,7	5,2
Randabstand									
R30 bis R120		Ccr,fi	[mm]			2	Nef		
Der Randabstand m	uss ≥ 300	mm betrager	n, wenn die	Brandbea	nspruchung	von mehr a	ls einer Seit	e angreift.	
Achsabstand									
R30 bis R120		Scr,fi	[mm]			2	Πef		
Betonausbruch au	f der lasta	bgewandter	Seite (pry	y-out)					
R30 bis R120		k ₈	[-1	1,0	2,	0	1,0	2,	0

Hilti Betonschraube HUS4	Anhang C7
Leistungen Wesentliche Merkmale unter Brandbeanspruchung in Beton	

Größe HUS4-H (F	=)				12	00		14		1	6
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Länge des Dübels i	m Beton	h _{nom}	[mm]	60	80	100	65	85	115	85	130
Stahlversagen unt	er Zug un	d Querbean	spruchun	g (F _{Rk,s,fi}	= N _{Rk,s,f}	= V _{Rk,s,ti})				
	R30	F _{Rk,s,fi}	[kN]	7,5	7,6	7,6	10,3	10,4	10,5	10,6	10,7
	R60	F _{Rk,s,fi}		5,5	5,7	5,8	7,7	7,9	8,0	8,1	8,2
	R90	F _{Rk,s,fi}		3,7	3,9	4,1	5,2	5,6	5,8	5,7	5,9
Charakteristischer	R120	F _{Rk,s,fi}		2,8	3,0	3,1	3,9	4,2	4,4	4,3	4,5
Widerstand	R30	M ⁰ Rk,s,fi		11,4	11,6	11,6	18,9	19,2	19,3	23,7	23,9
	R60	M ⁰ Rk,s,fi		8,4	8,8	8,9	14,1	14,6	14,8	18,1	18,3
	R90	M ⁰ Rk,s,fi		5,7	6,0	6,2	9,5	10,2	10,7	12,7	13,2
	R120	M ⁰ Rk,s,fi		4,3	4,6	4,7	7,2	7,7	8,1	9,6	10,0
Herausziehen											· · · · · · · · · · · · · · · · · · ·
Charakteristischer Widerstand	R30 R60 R90	N ⁰ Rk,c,fi	[kN]	2,6	4,2	6,1	2,9	4,5	7,5	4,6	8,7
Widerstand	R120	N ⁰ Rk,c,fi	[kN]	2,1	3,4	4,9	2,3	3,6	6,0	3,7	7,0
Betonausbruch											
Charakteristischer Widerstand	R30 R60 R90	N ⁰ Rk,c,fi	[kN]	2,4	5,4	9,8	2,9	6,1	13,9	6,2	19,4
Widerstand	R120	N ⁰ Rk,c,fi	[kN]	1,9	4,3	7,8	2,3	4,9	11,1	4,9	15,5
Randabstand											
R30 bis R120		Ccr,fi	[mm]				2	h _{ef}			
Der Randabstand m	uss ≥ 300	mm betragei	n, wenn die	e Brandb	eanspru	chung vo	n mehr a	ls einer S	Seite ang	reift.	
Achsabstand											
R30 bis R120		Scr,fi	[mm]				2 c	Ccr,fi			
Betonausbruch auf	der lasta	bgewandter	Seite (pr	y-out)							
R30 bis R120		k ₈	[-]				2.	,0			

Hilti Betonschraube HUS4	Anhang C8
Leistungen Wesentliche Merkmale unter Brandbeanspruchung in Beton	, .

Tabelle C5:	Wesentliche Merkmale unter Brandbeanspruchung in Beton für HUS4-C
-------------	---

Größe HUS4-C					8			10		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Länge des Dübels in	n Beton	h _{nom}	[mm]	40	60	70	55	75	85	
Stahlversagen unte	er Zug und	Querbeans	pruchun	g (F _{Rk,s,fi} =	N _{Rk,s,fi} = V _{Ri}	c,s,fi)			•	
	R30	F _{Rk,s,fi}	[kN]		0,5			1,0		
	R60	F _{Rk,s,fi}	[kN]	0,4				0,9		
	R90	F _{Rk,s,fi}	[kN]	0,3				0,7		
Charakteristischer	R120	F _{Rk,s,fi}	[kN]	0,2				0,6		
Widerstand	R30	M ⁰ Rk,s,fi	[Nm]	0,4				1,2		
	R60	M ⁰ Rk,s,fi	[Nm]		0,3			1,0		
	R90	M ⁰ Rk,s,fi	[Nm]		0,2			0,8		
	R120	M ⁰ Rk,s,fi	[Nm]		0,2			0,6		
Herausziehen										
Charakteristischer Widerstand	R30 R60 R90	$N_{Rk,p,fi}$	[kN]	1,3	2,8	3,6	2,3	3,9	4,7	
	R120	N _{Rk,p,fi}	[kN]	1,0	2,2	2,8	1,9	3,1	3,7	
Betonausbruch										
Charakteristischer Widerstand	R30 R60 R90	N ⁰ Rk,c,fi	[kN]	0,8	2,6	4,0	2,0	4,7	6,5	
-	R120	N ⁰ Rk,c,fi	[kN]	0,7	2,1	3,2	1,6	3,7	5,2	
Randabstand										
R30 bis R120		Ccr,fi	[mm]			2	h _{ef}			
Der Randabstand mเ	ıss ≥ 300 n	nm betragen	, wenn di	e Brandbea	ınspruchung	von mehr a	als einer Seit	e angreift.		
Achsabstand										
R30 bis R120		S _{cr,fi}	[mm]			2 0	Scr,fi			
Betonausbruch auf	der lastab	gewandten	Seite (pr	y-out)						
R30 bis R120		k ₈	[-]	1,0	2,	0	1,0	2,	0	
Bei feuchtem Beton is	st die Vera	nkerungstief	e um min	destens 30	mm zu verg	ırößern.				

Hilti Betonschraube HUS4	Anhang C9
Leistungen Wesentliche Merkmale unter Brandbeanspruchung in Beton	, amang oo

	Größe HUS4-A (F)					14			
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Beton	h _{nom}	[mm]	55	75	85	65	85	115	
Zug und	Querbeans	spruchung	g (F _{Rk,s,fi} =	N _{Rk,s,fi} = V _{Rk}	,s,fi)				
R30	F _{Rk,s,fi}	[kN]		4,2			8,4		
R60	F _{Rk,s,fi}	[kN]		3,3			6,8		
R90	F _{Rk,s,fi}	[kN]	2,5				5,1		
R120	F _{Rk,s,fi}	[kN]	2,1				4,3		
R30	M ⁰ Rk,s,fi	[Nm]		4,8			15,4		
R60	M ⁰ Rk,s,fi	[Nm]		3,8		12,4			
R90	M ⁰ Rk,s,fi	[Nm]		2,9			9,3		
R120 M ⁰ Rk,s,fi [Nm]				2,4			7,8		
R30 R60 R90	$N_{Rk,p,fi}$	[kN]	2,3	3,9	4,7	2,9	4,5	7,5	
R120	N _{Rk,p,fi}	[kN]	1,9	3,1	3,7	2,3	3,6	6,0	
				•					
R30 R60 R90	N ⁰ Rk,c,fi	[kN]	2,0	4,7	6,5	2,9	6,1	13,9	
R120	N ⁰ Rk,c,fi	[kN]	1,6	3,7	5,2	2,3	4,9	11,1	
	Ccr,fi	[mm]			2 h	1 _{ef}			
ss ≥ 300 m	nm betrager	ı, wenn die	Brandbea	nspruchung	von mehr a	ls einer Seit	e angreift.		
	S _{cr,fi}	[mm]			2 c	cr,fi			
	R30 R60 R90 R120 R30 R60 R90 R120 R30 R60 R90 R120 R30 R60 R90 R120	R30 F _{Rk,s,fi} R60 F _{Rk,s,fi} R90 F _{Rk,s,fi} R120 F _{Rk,s,fi} R30 M ⁰ _{Rk,s,fi} R60 M ⁰ _{Rk,s,fi} R90 M ⁰ _{Rk,s,fi} R120 M ⁰ _{Rk,s,fi} R120 M ⁰ _{Rk,s,fi} R30 N _{Rk,p,fi} R120 N _{Rk,p,fi} R30 N _{Rk,p,fi} R120 N _{Rk,p,fi} R30 N _{Rk,p,fi}	R30 F _{Rk,s,fi} [kN] R60 F _{Rk,s,fi} [kN] R90 F _{Rk,s,fi} [kN] R120 F _{Rk,s,fi} [kN] R30 M ⁰ _{Rk,s,fi} [Nm] R60 M ⁰ _{Rk,s,fi} [Nm] R90 M ⁰ _{Rk,s,fi} [Nm] R120 M ⁰ _{Rk,s,fi} [Nm] R120 M ⁰ _{Rk,s,fi} [Nm] R30 K ⁶⁰ K ⁶	R30	R30 F _{Rk,s,fi} [kN] 4,2 R60 F _{Rk,s,fi} [kN] 3,3 R90 F _{Rk,s,fi} [kN] 2,5 R120 F _{Rk,s,fi} [kN] 2,1 R30 M ⁰ _{Rk,s,fi} [Nm] 4,8 R60 M ⁰ _{Rk,s,fi} [Nm] 3,8 R90 M ⁰ _{Rk,s,fi} [Nm] 2,9 R120 M ⁰ _{Rk,s,fi} [Nm] 2,4 R30 R60 N _{Rk,p,fi} [kN] 2,3 3,9 R120 N _{Rk,p,fi} [kN] 1,9 3,1 R30 R60 N ⁰ _{Rk,c,fi} [kN] 1,9 3,1 R30 R60 N ⁰ _{Rk,c,fi} [kN] 1,9 3,1 R30 R60 N ⁰ _{Rk,c,fi} [kN] 1,6 3,7 C _{cr,fi} [mm] ss ≥ 300 mm betragen, wenn die Brandbeanspruchung	R60 $F_{Rk,s,fi}$ [kN] 3,3 R90 $F_{Rk,s,fi}$ [kN] 2,5 R120 $F_{Rk,s,fi}$ [kN] 2,1 R30 $M^0_{Rk,s,fi}$ [Nm] 4,8 R60 $M^0_{Rk,s,fi}$ [Nm] 2,9 R120 $M^0_{Rk,s,fi}$ [Nm] 2,4 R30 R60 N _{Rk,p,fi} [kN] 2,3 3,9 4,7 R90 N _{Rk,p,fi} [kN] 1,9 3,1 3,7 R120 N _{Rk,p,fi} [kN] 1,9 3,1 3,7 R30 N _{Rk,p,fi} [kN] 2,0 4,7 6,5 R90 R120 N _{Rk,c,fi} [kN] 1,6 3,7 5,2 C _{cr,fi} [mm] 2 t ss ≥ 300 mm betragen, wenn die Brandbeanspruchung von mehr a	R30 F _{Rk,s,fi} [kN] 4,2 R60 F _{Rk,s,fi} [kN] 3,3 R90 F _{Rk,s,fi} [kN] 2,5 R120 F _{Rk,s,fi} [kN] 2,1 R30 M ⁰ _{Rk,s,fi} [Nm] 4,8 R60 M ⁰ _{Rk,s,fi} [Nm] 3,8 R90 M ⁰ _{Rk,s,fi} [Nm] 2,9 R120 M ⁰ _{Rk,s,fi} [Nm] 2,4 R30 N _{Rk,p,fi} [kN] 2,3 3,9 4,7 2,9 R120 N _{Rk,p,fi} [kN] 1,9 3,1 3,7 2,3 R30 N _{Rk,p,fi} [kN] 1,9 3,1 3,7 2,3 R30 N _{Rk,p,fi} [kN] 1,9 3,1 3,7 2,3 R30 N _{Rk,p,fi} [kN] 1,9 3,1 5,2 2,3 R30 N ⁰ _{Rk,c,fi} [kN] 1,6 3,7 5,2 2,3 C _{cr,fi} [mm] 2 h _{ef} ss ≥ 300 mm betragen, wenn die Brandbeanspruchung von mehr als einer Seit	R30 FRIK,s,fi [kN] 4,2 8,4 R60 FRIK,s,fi [kN] 3,3 6,8 R90 FRIK,s,fi [kN] 2,5 5,1 R120 FRIK,s,fi [kN] 2,1 4,3 R30 MºRIK,s,fi [Nm] 4,8 15,4 R60 MºRIK,s,fi [Nm] 2,9 9,3 R120 MºRIK,s,fi [Nm] 2,4 7,8 R30 R60 NRIK,p,fi [kN] 2,3 3,9 4,7 2,9 4,5 R120 NRIK,p,fi [kN] 1,9 3,1 3,7 2,3 3,6 R30 R60 NORIK,e,fi [kN] 2,0 4,7 6,5 2,9 6,1 R120 NORIK,e,fi [kN] R120 NORIK,e,fi [kN] 1,6 3,7 5,2 2,3 4,9 Ccr,fi [mm] 2 her Sc ≥ 300 mm betragen, wenn die Brandbeanspruchung von mehr als einer Seite angreift. Scr,fi [mm] 2 Ccr,fi [mm] 3,3 4,2 5,5 5,1 4,3 5,4 4,3 5,4 4,7 2,9 4,7 6,5 2,9 6,1 R120 R12	

Hilti Betonschraube HUS4	Anhang C10
Leistungen Wesentliche Merkmale unter Brandbeanspruchung in Beton	7ang 0.10

Bei feuchtem Beton ist die Verankerungstiefe um mindestens 30 mm zu vergrößern.

Tabelle C7: Verschiebungen unter Zuglast

Größe HUS4					. 8		10		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Länge des Dübels im Beton h		h _{nom}	[mm]	40	60	70	55	75	85
Gerissener Zuglast Beton C20/25 bis Verschiebung	Zuglast	N	[kN]	2,6	5,4	6,9	3,8	7,5	8,6
	Verschiebung	δ_{N0}	[mm]	0,1	0,3	0,4	0,2	0,4	0,4
C50/60	verscritebung	δ _{N∞}	[mm]	0,3	0,4	0,4	0,7	0,7	0,9
Ungerissener	Zuglast	N	[kN]	3,7	7,1	9,1	5,2	10,5	12,2
Beton C20/25 bis	Verschiebung ·	δ_{N0}	[mm]	0,1	0,2	0,2	0,1	0,3	0,3
C50/60		δ _{N∞}	[mm]	0,3	0,4	0,4	0,7	0,7	0,9

Größe HUS4					12			14		16	
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Länge des Dübels im Beton h _{nom} [mm]		60	80	100	65	85	115	85	130		
Gerissener	Zuglast	N	[kN]	5,1	8,2	11,7	5,7	8,6	14,4	8,7	16,7
Beton C20/25 bis	Verschiebung	δνο	[mm]	0,3	0,4	0,6	0,3	0,4	0,7	0,1	0,4
C50/60	verschiebung	δn∞	[mm]	0,9	0,9	1,2	1,3	1,3	1,5	1,3	1,4
Ungerissener	Zuglast	N	[kN]	6,8	10,8	15,5	7,5	11,7	19,1	11,5	22,9
Beton C20/25 bis	Verschiebung	δ _{N0}	[mm]	0,2	0,3	0,4	0,2	0,3	0,5	0,4	0,3
C50/60	verscritebung	δ _{N∞}	[mm]	0,9	0,9	1,2	1,3	1,3	1,5	1,3	1,4

Tabelle C8: Verschiebungen unter Querlast

Größe HUS4					. 8		10			
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Länge des Dübels im Beton		h _{nom}	[mm]	40	60	70	55	75	85	
Beton C20/25 bis C50/60	Querlast	V	[kN]	10,7	10,7	12,5	16,5	16,5	18,3	
	Verschiebung	δνο	[mm]	1,3	1,1	0,9	1,4	1,3	1,0	
		δ∨∞	[mm]	2,0	1,7	1,4	2,1	2,0	1,5	

Größe HUS4			12			14			16		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Länge des Dübels im Beton		h _{nom}	[mm]	60	80	100	65	85	115	85	130
Beton C20/25 bis C50/60	Querlast	V	[kN]	22,2	22,2	25,7	31,4	35,4	35,4	37,2	41,8
	Verschiebung	δ_{V0}	[mm]	1,6	1,6	0,9	5,3	5,3	4,0	2,3	1,8
		δ∨∞	[mm]	2,3	2,4	1,4	7,9	7,9	6,0	3,5	2,7

Hilti Betonschraube HUS4	Anhang C11
Leistungen Verschiebungen für statische und quasi-statische Lasten	Annually 011