

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0493 of 28 July 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection system Hilti HIT-HY 200-A

Bonded anchor for use in concrete

Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

39 pages including 3 annexes

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-11/0493 issued on 3 February 2017

European Technical Assessment ETA-11/0493

Page 2 of 39 | 28 July 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z29102.17 8.06.01-128/17

European Technical Assessment ETA-11/0493

Page 3 of 39 | 28 July 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Injection system Hilti HIT-HY 200-A is a bonded anchor consisting of a foil pack with injection mortar Hilti HIT-HY 200-A and a steel element according to Annex A.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static action, displacements	See Annex C1 to C12
Characteristic resistance for seismic performance categories C1 and C2, displacements	See Annex C13 to C17

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Z29102.17 8.06.01-128/17

European Technical Assessment ETA-11/0493

Page 4 of 39 | 28 July 2017

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

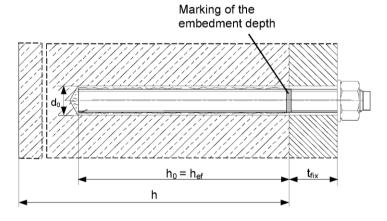
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

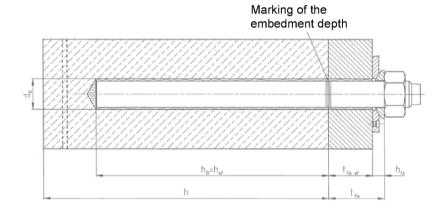
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 28 July 2017 by Deutsches Institut für Bautechnik

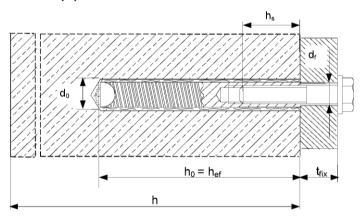
BD Dipl.-Ing. Andreas Kummerow beglaubigt:
Head of Department Lange


Z29102.17 8.06.01-128/17

Installed condition


Figure A1:

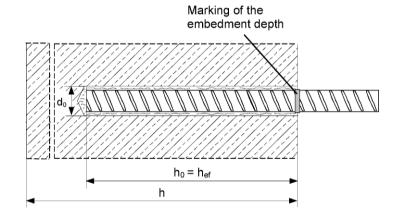
Threaded rod and HIT-V-..., AM 8.8


Figure A2:

Threaded rod and HIT-V-..., AM 8.8, with Hilti Filling Set

Figure A3:

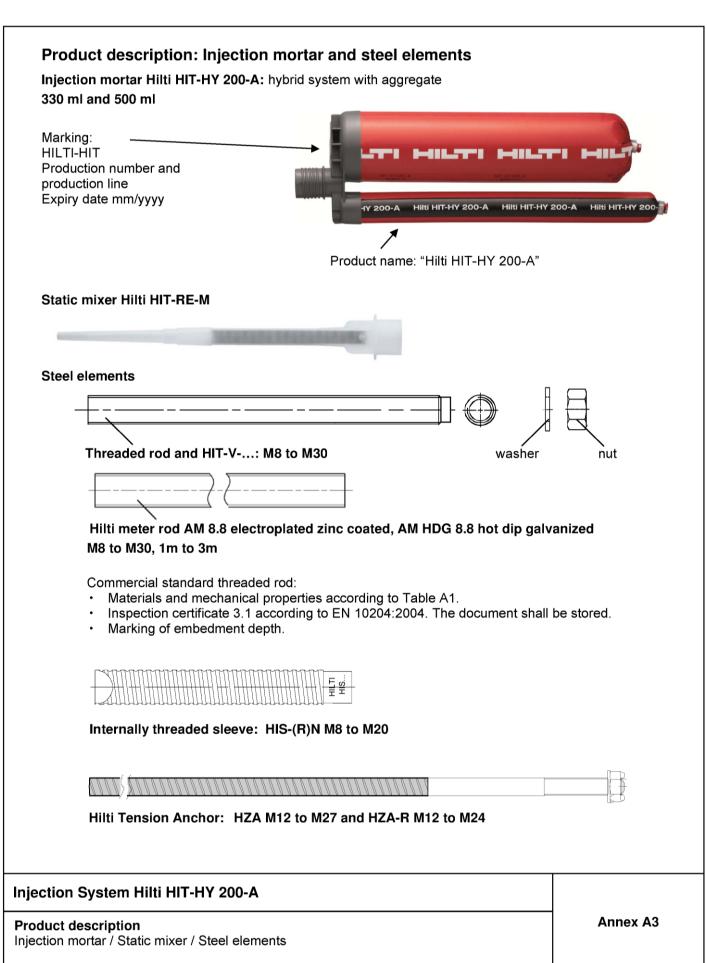
Internally threaded sleeve HIS-(R)N



Injection System Hilti HIT-HY 200-A	
Product description Installed condition	Annex A1

Installed condition

Figure A4: Reinforcing bar

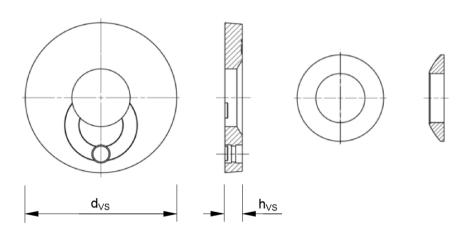


Injection System Hilti HIT-HY 200-A

Product description
Installed condition

Annex A2

Product description: Injection mortar and steel elements


Reinforcing bar (rebar): ϕ 8 to ϕ 32

- · Materials and mechanical properties according to Table A1
- · Dimensions according to Annex B6

Hilti Filling Set to fill the annular gap between anchor and fixture

Sealing washer

Filling Set			M16	M20	M24
Diameter of sealing washer	d_{VS}	[mm]	56	60	70
Thickness of sealing washer	h_{VS}	[mm]		6	

Injection System Hilti HIT-HY 200-A	
Product description Injection mortar / Static mixer / Steel elements	Annex A4

Table A1: Materials

Designation	Material
Reinforcing bars	
Rebar: EN 1992-1-1: 2004 and AC:2010, Annex C	Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$
Metal parts made of	zinc coated steel
Threaded rod, HIT-V-5.8(F)	Strength class 5.8, f_{uk} = 500 N/mm², f_{yk} = 400 N/mm², Elongation at fracture (I_0 =5d) > 8% ductile Electroplated zinc coated \geq 5 μ m, (F) hot dip galvanized \geq 45 μ m
Threaded rod, HIT-V-8.8(F)	Strength class 8.8, f_{uk} = 800 N/mm², f_{yk} = 640 N/mm², Elongation at fracture (I_0 =5d) > 12% ductile Electroplated zinc coated \geq 5 μ m, (F) hot dip galvanized \geq 45 μ m
Hilti Meter rod, AM 8.8 (HDG)	Strength class 8.8, f_{uk} = 800 N/mm², f_{yk} = 640 N/mm² Elongation at fracture (I_0 = 5d) > 12% ductile, Electroplated zinc coated \geq 5 μ m, (HDG) hot dip galvanized \geq 45 μ m
Hilti tension anchor HZA	Round steel with threaded part: electroplated zinc coated ≥ 5 μm Rebar: Bars class B according to NDP or NCL of EN 1992-1-1/NA:2013
Internally threaded sleeve HIS-N	Electroplated zinc coated ≥ 5 μm
Washer	Electroplated zinc coated \geq 5 μ m, hot dip galvanized \geq 45 μ m
Nut	Strength class of nut adapted to strength class of threaded rod Electroplated zinc coated $\geq 5~\mu m,~(F)$ hot dip galvanized $\geq 45~\mu m$
Hilti filling set (F)	Filling washer: Electroplated zinc coated $\geq 5~\mu m$, (F) hot dip galvanized $\geq 45~\mu m$ Spherical washer: Electroplated zinc coated $\geq 5~\mu m$, (F) hot dip galvanized $\geq 45~\mu m$ Lock nut: Electroplated zinc coated $\geq 5~\mu m$, (F) hot dip galvanized $\geq 45~\mu m$
Metal parts made of	stainless steel
Threaded rod, HIT-V-R	For \leq M24: strength class 70, $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 450 \text{ N/mm}^2$; For $>$ M24: strength class 50, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 210 \text{ N/mm}^2$; Elongation at fracture (I_0 =5d) $>$ 8% ductile Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
Hilti tension anchor HZA-R	Round steel with threaded part: Stainless steel 1.4404, 1.4362, 1.4571 EN 10088-1:2014 Rebar: Bars class B according to NDP or NCL of EN 1992-1-1/NA:2013
Internally threaded sleeve HIS-RN	Stainless steel 1.4401, 1.4571 EN 10088-1:2014
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
Nut	Strength class of nut adapted to strength class of threaded rod Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014

Injection System Hilti HIT-HY 200-A	
Product description Materials	Annex A5

Page 10 of European Technical Assessment ETA-11/0493 of 28 July 2017

English translation prepared by DIBt

Metal parts made o	Metal parts made of high corrosion resistant steel		
Threaded rod HIT-V-HCR	For \leq M20: f_{uk} = 800 N/mm², f_{yk} = 640 N/mm², For $>$ M20: f_{uk} = 700 N/mm², f_{yk} = 400 N/mm², Elongation at fracture (I_0 =5d) $>$ 8% ductile High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014		
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014		
Nut	Strength class of nut adapted to strength class of threaded rod High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014		

Injection System Hilti HIT-HY 200-A	
Product description Materials	Annex A6

Specifications of intended use

Anchorages subject to:

- Static and quasi static loading.
- Seismic performance category C1 and C2 (see Table B1).

Base material:-

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Cracked and non-cracked concrete.

Temperature in the base material:

· at installation

-10 °C to +40 °C

· in-service

Temperature range I: -40 °C to +40 °C

(max. long term temperature +24 °C and max. short time temperature +40 °C)

Temperature range II: -40 °C to +80 °C

(max. long term temperature +50 °C and max. short time temperature +80 °C)

Temperature range III: -40 °C to +120 °C

(max. long term temperature +72 °C and max. short time temperature +120 °C)

Table B1: Specifications of intended use

	HIT-HY 200-A with			
Elements	HIT-V AM 8.8	Rebar	HZA(-R)	HIS-(R)N
Hammer drilling with hollow drill bit TE-CD or TE-YD	✓	√	√	~
Hammer drilling	✓	✓	✓	✓
Static and quasi static loading in cracked and non-cracked concrete	M8 to M30	φ 8 to φ 32	M12 to M27	M8 to M20
Seismic performance category C1	M10 to M30	φ 10 to φ 32	M12 to M27	-
Seismic performance category C2	M16 to M24, HIT-V 8.8, AM 8.8 HIT-V-F 8.8, AM HDG 8.8 Commercial standard rod (electroplated zinc coated only)	-	-	-

Injection System Hilti HIT-HY 200-A	
Intended Use Specifications	Annex B1

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal conditions, if other
 particular aggressive conditions exist
 (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing products are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages under static or quasi-static loading are designed in accordance with:
 - "EOTA Technical Report TR 029, Edition September 2010"
- · Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - "EOTA Technical Report TR 045, Edition February 2013"

Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure. Fastenings in stand-off installation or with a grout layer under seismic action are not covered in this European technical assessment (ETA).

Installation:

- Use category: dry or wet concrete (not in flooded holes)
- · Overhead installation is admissible
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection System Hilti HIT-HY 200-A	
Intended Use	Annex B2
Specifications	

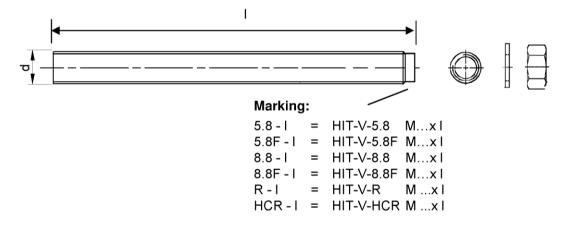


Table B2: Installation parameters of threaded rod and HIT-V-... and AM 8.8

Threaded rod and HIT-V AM 8.8			М8	M10	M12	M16	M20	M24	M27	M30
Diameter of element	d	[mm]	8	10	12	16	20	24	27	30
Nominal diameter of drill bit	d_0	[mm]	10	12	14	18	22	28	30	35
Effective embedment depth and drill hole depth	$h_{\rm ef} = h_0$	[mm]	60 to 160	60 to 200	70 to 240	80 to 320	90 to 400	96 to 480	108 to 540	120 to 600
Maximum diameter of clearance hole in the fixture 1)	d _f	[mm]	9	12	14	18	22	26	30	33
Thickness of Hilti filling set	h _{fs}	[mm]	-	-	-	11	13	15	-	-
Effective fixture thickness with Hilti filling set	$t_{fix,eff}$	[mm]				t _{fix,eff} =	t _{fix} -h _{fs}			
Minimum thickness of concrete member	h _{min}	[mm]		h _{ef} + 30 : 100 mr		h _{ef} + 2⋅d ₀				
Maximum torque moment	T _{max}	[Nm]	10	20	40	80	150	200	270	300
Minimum spacing	S _{min}	[mm]	40	50	60	75	90	115	120	140
Minimum edge distance	C _{min}	[mm]	40	45	45	50	55	60	75	80

¹⁾ for larger clearance hole see "TR 029 section 1.1"

HIT-V-...

Hilti meter rod AM (HDG) 8.8

Injection System Hilti HIT-HY 200-A	
Intended Use Installation parameters of threaded rod, HIT-V and AM 8.8	Annex B3

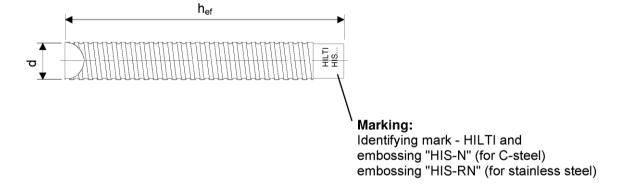


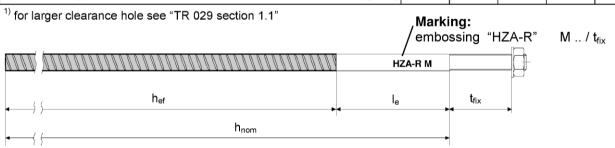
Table B3: Installation parameters of internally threaded sleeve HIS-(R)N

Internally threaded sleeve HIS-(R	М8	M10	M12	M16	M20		
Outer diameter of sleeve	[mm]	12,5	16,5	20,5	25,4	27,6	
Nominal diameter of drill bit	d_0	[mm]	14	18	22	28	32
Effective embedment depth and drill hole depth	$h_{ef} = h_0$	[mm]	90	110	125	170	205
Maximum diameter of clearance hole in the fixture 1)	d _f	[mm]	9	12	14	18	22
Minimum thickness of concrete member	h _{min}	[mm]	120	150	170	230	270
Maximum torque moment	T _{max}	[Nm]	10	20	40	80	150
Thread engagement length min-ma	ax h _s	[mm]	8-20	10-25	12-30	16-40	20-50
Minimum spacing	S _{min}	[mm]	60	75	90	115	130
Minimum edge distance	C _{min}	[mm]	40	45	55	65	90

¹⁾ for larger clearance hole see "TR 029 section 1.1"

Internally threaded sleeve HIS-(R)N...

Injection System Hilti HIT-HY 200-A	
Intended Use Installation parameters of internally threaded sleeve HIS-(R)N	Annex B4


Table B4: Installation parameters of Hilti tension anchor HZA-R

Hilti tension anchor HZA-R			M12	M16	M20	M24
Rebar diameter	ф	[mm]	12	16	20	25
Nominal embedment depth and drill hole depth	$h_{nom} = h_0$	[mm]	170 to 240	180 to 320	190 to 400	200 to 500
Effective embedment depth ($h_{ef} = h_{nom} - I_e$)	h_{ef}	[mm]		h_{nom} -	– 100	
Length of smooth shaft	l _e	[mm]		10	00	
Nominal diameter of drill bit	d_0	[mm]	16	20	25	32
Maximum diameter of clearance hole in the fixture 1)	d_f	[mm]	14	18	22	26
Maximum torque moment	T_{max}	[Nm]	40	80	150	200
Minimum thickness of concrete member	h _{min}	[mm]	h _{nom} + 2·d ₀			
Minimum spacing	S _{min}	[mm]	65	80	100	130
Minimum edge distance	C _{min}	[mm]	45	50	55	60

¹⁾ for larger clearance hole see "TR 029 section 1.1"

Table B5: Installation parameters of Hilti tension anchor HZA

Hilti tension anchor HZA			M12	M16	M20	M24	M27
Rebar diameter	φ	[mm]	12	16	20	25	28
Nominal embedment depth and drill hole depth	$h_{nom} = h_0$	[mm]	90 to 240	100 to 320	110 to 400	120 to 500	140 to 560
Effective embedment depth ($h_{ef} = h_{nom} - l_e$)	h_{ef}	[mm]		ı	n _{nom} – 20)	
Length of smooth shaft	l _e	[mm]	20				
Nominal diameter of drill bit	d_0	[mm]	16	20	25	32	35
Maximum diameter of clearance hole in the fixture 1)	d_f	[mm]	14	18	22	26	30
Maximum torque moment	T _{max}	[Nm]	40	80	150	200	270
Minimum thickness of concrete member	h _{min}	[mm]	h _{nom} + 2·d ₀				
Minimum spacing	S _{min}	[mm]	65	80	100	130	140
Minimum edge distance	C _{min}	[mm]	45	50	55	60	75

Injection System Hilti HIT-HY 200-A	
Intended Use Installation parameters of Hilti tension anchor HZA-(R)	Annex B5

Table B6: Installation parameters of reinforcing bar

Reinforcing bar (rebar)			ф8	ф 10	ф	12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Diameter	ф	[mm]	8	10	1	2	14	16	20	25	26	28	30	32
Effective embedment depth and drill hole depth	$h_{ef} = h_0$	[mm]	60 to 160	60 to 200	t	0 0 40	75 to 280	80 to 320	90 to 400	100 to 500	104 to 520	112 to 560	120 to 600	128 to 640
Nominal diameter of drill bit	d ₀	[mm]	10 / 12 ¹⁾	12 / 14 ¹⁾	14 ¹⁾	16 ¹⁾	18	20	25	32	32	35	37	40
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} + 30 ≥ 100 mm				h _{ef} + 2·d ₀							
Minimum spacing	S _{min}	[mm]	40	50	6	0	70	80	100	125	130	140	150	160
Minimum edge distance	C _{min}	[mm]	40	45	4	5	50	50	65	70	75	75	80	80

¹⁾ Each of the two given values can be used.

Reinforcing bar

For rebar bolt

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar h_{rib} shall be in the range 0,05·φ ≤ h_{rib} ≤ 0,07·φ
 (φ: Nominal diameter of the bar; h_{rib}: Rib height of the bar)

Injection System Hilti HIT-HY 200-A	
Intended Use Installation parameters of reinforcing bar (rebar)	Annex B6

Table B7: Maximum working time and minimum curing time

Temperature in the I material T	pase Maximum working time twork	Minimum curing time t _{cure}
-10 °C to -5 °C	1,5 hours	7 hours
> -5 °C to 0 °C	50 min	4 hours
> 0 °C to 5 °C	25 min	2 hours
> 5 °C to 10 °C	15 min	75 min
> 10 °C to 20 °C	7 min	45 min
> 20 °C to 30 °C	4 min	30 min
> 30 °C to 40 °C	3 min	30 min

Injection System Hilti HIT-HY 200-A	
Intended Use Maximum working time and minimum curing time	Annex B7

Table B8: Parameters of cleaning and setting tools

	Elem	nents			Installation		
Threaded rod, HIT-V	HIS-(R)N	Rebar	HZA(-R)	Hammer drilling hollow drill bit		Brush	Piston plug
шшшшш			()))))))))			***************************************	
size	size	size	size	d₀ [mm]	d₀ [mm]	HIT-RB	HIT-SZ
M8	-	φ8	-	10	-	10	-
M10	-	φ8 / φ10	-	12	12 ¹⁾	12	12
M12	M8	φ10 / φ12	-	14	14 ¹⁾	14	14
-	-	φ12	M12	16	16	16	16
M16	M10	φ14	-	18	18	18	18
-	-	φ16	M16	20	20	20	20
M20	M12	-	-	22	22	22	22
-	-	φ20	M20	25	25	25	25
M24	M16	-	-	28	28	28	28
M27	-	-	-	30	-	30	30
-	M20	φ25 / φ26	M24	32	32	32	32
M30	-	ф28	M27	35	35	35	35
-	-	ф30	-	37	-	37	37
-	-	ф32	-	40	-	40	40

¹⁾ To be used in combination with Hilti vacuum cleaner with suction volume ≥ 61 l/s (VC 20/40 –Y in corded mode only).

Cleaning alternatives

Manual Cleaning (MC):

Hilti hand pump for blowing out drill holes with diameters $d_0 \le 20$ mm and drill hole depths $h_0 \le 10 \cdot d$

Compressed air cleaning (CAC):

Air nozzle with an orifice opening of minimum 3,5 mm in diameter.

Automatic Cleaning (AC):

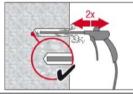
Cleaning is performed during drilling with Hilti TE-CD and TE-YD drilling system including vacuum cleaner.

Injection System Hilti HIT-HY 200-R

Intended Use

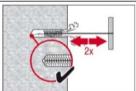
Cleaning and setting tools

Annex B8



Installation instruction Hole drilling a) Hammer drilling Drill hole to the required embedment depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit. b) Hammer drilling with Hilti hollow drill bit Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit attached to Hilti vacuum cleaner VC 20/40 (-Y) (suction volume ≥ 57 l/s) with automatic cleaning of the filter activated. This drilling system removes the dust and cleans the bore hole during drilling when used in accordance with the user's manual. When using TE-CD size 12 and 14 refer to Table B8. After drilling is completed, proceed to the "injection preparation" step in the installation instruction. **Drill hole cleaning** Just before setting an anchor, the drill hole must be free of dust and debris. Manual Cleaning (MC) non-cracked concrete only for drill hole diameters $d_0 \le 20$ mm and drill hole depths $h_0 \le 10 \cdot d$ The Hilti hand pump may be used for blowing out drill holes up to diameters $d_0 \le 20$ mm and embedment depths up to $h_{ef} \le 10 \cdot d$. Blow out at least 4 times from the back of the drill hole until return air stream is free of noticeable dust Brush 4 times with the specified brush (see Table B8) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge \text{drill hole } \emptyset$) - if not the brush is too small and must be replaced with the proper brush diameter. Blow out again with Hilti hand pump at least 4 times until return air stream is free of noticeable dust.

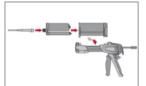
Injection System Hilti HIT-HY 200-R	
Intended Use Installation instructions	Annex B9



Compressed air cleaning (CAC) for all drill hole diameters do and all drill hole depths ho

Blow 2 times from the back of the hole (if needed with nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust.

For drill hole diameters \geq 32 mm the compressor has to supply a minimum air flow of 140 m³/h.


Brush 2 times with the specified brush (see Table B8) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.

The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.

Blow again with compressed air 2 times until return air stream is free of noticeable dust.

Injection preparation

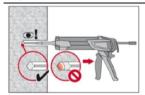
Tightly attach new Hilti mixing nozzle HIT-RE-M to foil pack manifold (snug fit). Do not modify the mixing nozzle.

Observe the instruction for use of the dispenser.

Check foil pack holder for proper function. Do not use damaged foil packs / holders. Insert foil pack into foil pack holder and put holder into the dispenser.

Installation instructions

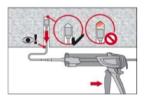
Discard initial adhesive. The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack an initial amount of adhesive has to be discarded. Discarded quantities are


2 strokes for 330 ml foil pack, 3 strokes for 500 ml foil pack, 4 strokes for 500 ml foil pack ≤ 5 °C.

Injection System Hilti HIT-HY 200-A
Intended Use

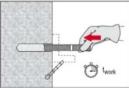
Annex B10

Inject adhesive from the back of the drill hole without forming air voids.



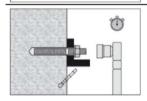
Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull.

Fill holes approximately 2/3 full, to ensure that the annular gap between the anchor and the concrete is completely filled with adhesive along the embedment length.



After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.

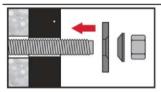
Overhead installation and/or installation with embedment depth $h_{\rm ef}$ > 250mm. For overhead installation the injection is only possible with the aid of extensions and piston plugs. Assemble HIT-RE-M mixer, extension(s) and appropriately sized piston plug (see Table B8). Insert piston plug to back of the hole and inject adhesive. During injection the piston plug will be naturally extruded out of the drill hole by the adhesive pressure


Setting the element

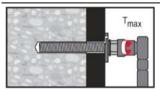
Before use, verify that the element is dry and free of oil and other contaminants. Mark and set element to the required embedment depth until working time t_{work} has elapsed. The working time t_{work} is given in Table B7.

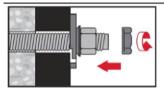
For overhead installation use piston plugs and fix embedded parts with e.g. wedges.

Loading the anchor: After required curing time t_{cure} (see Table B7) the anchor can be loaded.

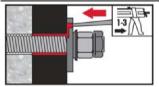

The applied installation torque shall not exceed the values T_{max} given in Table B2 to Table B5.

Injection System Hilti HIT-HY 200-A


Annex B11


Installation of Filling Set

Use Hilti filling set with standard nut. Observe the correct orientation of filling washer and spherical washer.



The applied installation torque shall not exceed the values T_{max} given in Table B2 to Table B5.

Optional:

Installation of lock nut. Tighten with a 1/4 to 1/2 turn. (Not for size M24.)

Fill the annular gap between the anchor rod and fixture with 1-3 strokes of Hilti injection mortar HIT-HY 200 A.

Follow the installation instructions supplied with the HIT-HY 200 A foil pack.

After required curing time t_{cure} the anchor can be loaded.

Injection System Hilti HIT-HY 200-A	
Intended Use Installation instructions	Annex B12

Table C1: Characteristic values of resistance for threaded rod, HIT-V-... and AM 8.8 under tension loads in concrete

-V, AM	8.8	М8	M10	M12	M16	M20	M24	M27	M30
γ2	[-]				1	,0			
$N_{Rk,s}$	[kN]				As	f _{uk}			
γ _{Ms,N} 1)	[-]				1	,5			
$\gamma_{Ms,N}^{1)}$	[-]	-] 1,5							
$\gamma_{Ms,N}^{1)}$	[-]	1,86 2,8						86	
$\gamma_{Ms,N}^{\qquad 1)}$	[-]			1,5				2,1	
e failure									
cracked co	ncrete C20	/25							
$\tau_{Rk,ucr}$	[N/mm ²]	18							
$\tau_{Rk,ucr}$	[N/mm ²]	15							
$ au_{Rk,ucr}$	[N/mm ²]	13							
ced concret	te C20/25								
$\tau_{Rk,cr}$	[N/mm ²]	7	,5		8,5			9,0	
$\tau_{Rk,cr}$	[N/mm ²]	6	,0		7,0			7,5	
$\tau_{Rk,cr}$	[N/mm ²]	5	,5		6,0			6,5	
	C30/37				1,	04			
Ψc	C40/45				1,	07			
	C50/60	1,1							
h / h _e	_f ≥ 2,0	1	,0 ⋅ h _{ef}						
2,0 > h /	/ h _{ef} > 1,3	4,6 h	า _{ef} - 1,8	3 h 1	,3				
h / h _e	_f ≤ 1,3	2,	,26 h _{ef}		+	1,0)·h _{ef}	2,26·h _{ef}	C _{cr,sp}
S _{cr,sp}	[mm]				2·c	cr,sp			
	γ_2 $N_{Rk,s}$ $\gamma_{Ms,N}^{1)}$ $\gamma_{Ms,N}^{1)}$ $\gamma_{Ms,N}^{1)}$ $\gamma_{Ms,N}^{1)}$ e failure cracked co $\tau_{Rk,ucr}$ $\tau_{Rk,ucr}$ $\tau_{Rk,cr}$	$N_{Rk,s}$ [kN] $\gamma_{Ms,N}^{1)}$ [-] $\gamma_{Ms,N}^{1)}$ [-] $\gamma_{Ms,N}^{1)}$ [-] $\gamma_{Ms,N}^{1)}$ [-] e failure cracked concrete C20 $\tau_{Rk,ucr}$ [N/mm²] $\tau_{Rk,ucr}$ [N/mm²] $\tau_{Rk,ucr}$ [N/mm²] $\tau_{Rk,cr}$ [N/mm²]	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	γ_2 [-] $N_{Rk,s}$ [kN] $\gamma_{Ms,N}^{1}$ [-] $\gamma_{Ms,N}^{1}$ [-] $\gamma_{Ms,N}^{1}$ [-] $\gamma_{Ms,N}^{1}$ [-] e failure $\gamma_{Rk,ucr}$ [N/mm²] $\gamma_{Rk,cr}$ [N/mm²]	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

¹⁾ In absence of national regulations.

Injection System Hilti HIT-HY 200-A	
Performances Characteristic values of resistance under tension loads in concrete Design according to "EOTA Technical Report TR 029, Edition September 2010"	Annex C1

Table C2: Characteristic values of resistance for threaded rod, HIT-V-... and AM 8.8 under shear loads

HIT-HY 200-A with threaded rod, HIT	-V, AM	8.8	М8	M10	M12	M16	M20	M24	M27	M30	
Steel failure without lever arm											
Characteristic steel resistance	$V_{Rk,s}$	[kN]	0,5 · A _s · f _{uk}								
Partial safety factor grade 5.8	γ _{Ms,V} 1)	[-]				1,	25				
Partial safety factor grade 8.8	γ _{Ms,V} 1)	[-]				1,	25				
Partial safety factor HIT-V-R	γ _{Ms,V} 1)	[-]			1,	56			2,	2,38	
Partial safety factor HIT-V-HCR	γ _{Ms,V} 1)	[-]			1,25				1,75		
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1,2 · V	$V_{\rm el} \cdot f_{\rm uk}$	(
Concrete pry-out failure											
Factor in equation (5.7) of Technical Report TR 029 for the design of bonded anchors	k	[-]	2,0								
Concrete edge failure											
The value of h _{ef} for calculation in equations (5.8a) and (5.8b) of Technical Report TR 029 is limited by:			min (h _{ef} ; 12 · d _{nom})								
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30	

¹⁾ In absence of national regulations.

Injection System Hilti HIT-HY 200-A	
Performances Characteristic values of resistance under shear loads in concrete Design according to "EOTA Technical Report TR 029, Edition September 2010"	Annex C2

Table C3: Characteristic values of resistance for internally threaded sleeve HIS-(R)N under tension loads in concrete

Hilti HIT-HY 200-A with HIS-(R)N			М8	M10	M12	M16	М	20	
Installation safety factor	γ2	[-]			1,0	'	'		
Steel failure threaded rods		'							
Characteristic resistance HIS-N with screw grade 8.8	$N_{Rk,s}$	[kN]	25	1	16				
Partial safety factor	γ _{Ms,N} 1)	[-]		1,50					
Characteristic resistance HIS-RN with screw grade 70	$N_{Rk,s}$	[kN]	26	41	59	110	1	66	
Partial safety factor	γ _{Ms,N} 1)	[-]			1,87		2	:,4	
Combined pull-out and Concrete co	ne failure								
Effective anchorage depth	h _{ef}	[mm]	90	110	125	170	2	05	
Effective anchor diameter	d_1	[mm]	12,5	16,5	20,5	25,4	27	7,6	
Characteristic bond resistance in non-c	racked cor	ncrete C20/2	5						
Temperature range I: 40 °C/24 °C	$ au_{Rk,ucr}$	[N/mm²]	13						
Temperature range II: 80 °C/50 °C	$ au_{Rk,ucr}$	[N/mm²]	11						
Temperature range III: 120 °C/72 °C	$ au_{Rk,ucr}$	[N/mm²]			9,5				
Characteristic bond resistance in crac	ked concr	ete C20/25							
Temperature range I: 40 °C/24 °C	$ au_{Rk,cr}$	[N/mm²]			7				
Temperature range II: 80 °C/50 °C	$ au_{Rk,cr}$	[N/mm²]			5,5				
Temperature range III: 120 °C/72 °C	$ au_{Rk,cr}$	[N/mm²]			5				
		C30/37			1,04				
Increasing factor for τ _{Rk} in concrete	$\Psi_{\mathbf{c}}$	C40/45			1,07				
		C50/60			1,1				
Splitting failure relevant for non-cra	cked cond	rete							
	h / h _{ef} ≥ 2,0		1,0	1,0·h _{ef} h/h _{ef} 2,0					
Edge distance c _{cr,sp} [mm] for	2,0 > h /	h _{ef} > 1,3	4,6⋅h _{ef}	- 1,8·h	1,3				
	h / h,	_{ef} ≤ 1,3	2,26	6⋅h _{ef}	-	1,0·h _{ef}	2,26·h _{ef}	C _{cr,}	
Spacing	S _{cr,sp}	[mm]			2·c _{cr,sp}				

In absence of national regulations.

Injection System Hilti HIT-HY 200-A	
Performances Characteristic values of resistance under tension loads in concrete Design according to "EOTA Technical Report TR 029, Edition September 2010"	Annex C3

Table C4: Characteristic values of resistance for internally threaded sleeve HIS-(R)N under shear loads in concrete

Hilti HIT-HY 200-A with HIS-(R)N			М8	M10	M12	M16	M20
Steel failure without lever arm							
Characteristic resistance HIS-N with screw grade 8.8	$V_{Rk,s}$	[kN]	13	23	34	63	58
Partial safety factor	γ _{Ms,} ∨ ¹⁾	[-]			1,25		
Characteristic resistance HIS-RN with screw grade 70	$V_{Rk,s}$	[kN]	13	20	30	55	83
Partial safety factor	γ _{Ms,} ∨ ¹⁾	[-]		1,	56		2,0
Steel failure with lever arm							
Characteristic resistance HIS-N with screw grade 8.8	$M^o_{Rk,s}$	[Nm]	30	60	105	266	519
Partial safety factor	γ _{Ms,} ∨ ¹⁾	[-]			1,25		
Characteristic resistance HIS-RN with screw grade 70	$M^{o}_{Rk,s}$	[Nm]	26	52	92	233	454
Partial safety factor	γ _{Ms,} ∨ ¹⁾	[-]			1,56		
Concrete pry-out failure							
Factor in equation (5.7) of Technical Report TR 029 for the design of bonded anchors	k	[-]			2,0		
Concrete edge failure							
Outside diameter of anchor	d _{nom}	[mm]	12,5	16,5	20,5	25,4	27,6

In absence of national regulations.

Injection System Hilti HIT-HY 200-A	
Performances Characteristic values of resistance under shear loads in concrete Design according to "EOTA Technical Report TR 029, Edition September 2010"	Annex C4

Table C5: Characteristic values of resistance for Hilti tension anchor HZA / HZA-R under tension loads in concrete

Installation safety factor Steel failure	γ2								
Stool failure		[-]	1,0						
Steer failure									
Characteristic resistance HZA	$N_{Rk,s}$	[kN]	46	86	135	194	253		
Characteristic resistance HZA-R	$N_{Rk,s}$	[kN]	62	-					
Partial safety factor	γ _{Ms} 1)	[-]			1,4				
Combined pull-out and concrete con									
Diameter of rebar	d	[mm]	12	16	20	25	28		
Characteristic bond resistance in non-o	cracked con	crete C20/2	5						
Temperature range I: 40 °C/24 °C	$ au_{Rk,ucr}$	[N/mm²]			12				
Temperature range II: 80 °C/50 °C	$ au_{Rk,ucr}$	[N/mm²]			10				
Temperature range III: 120 °C/72 °C	$\tau_{Rk,ucr}$	[N/mm²]			8,5				
Characteristic bond resistance in crack	ced concrete	C20/25							
Temperature range I: 40 °C/24 °C	$ au_{Rk,cr}$	[N/mm²]	٦ 7						
Temperature range II: 80 °C/50 °C	$ au_{Rk,cr}$	[N/mm²]	5,5						
Temperature range III: 120 °C/72 °C	$ au_{Rk,cr}$	[N/mm²]	5						
		C30/37			1,04				
Increasing factor for τ_{Rk} in concrete	ψ_{c}	C40/45			1,07				
		C50/60	1,1						
Effective anchorage depth HZ	ZA h _{ef}	[mm]			h _{nom} – 20				
for calculation of N_{Rkp}^0 acc. Eq. 5.2a $-\!-\!-\!-$									
(TR 029, 5.2.2.3 Combined pull -out HZ and concrete cone failure)	ZA-R h _{ef}	[mm]		h _{nom} -	– 100		-		
Concrete cone failure									
Effective anchorage depth									
for calculation of $N_{Rk,c}^0$ acc. Eq. 5.3a HZ	ZA ZA-R h _{ef}	[mm]			h_{nom}				
(TR 029, 5.2.2.4 Concrete cone failure)	ZA-R				- 110III				
Splitting failure relevant for non-cra	cked concr	ete							
	h / h _{ef}	≥ 2,0	1,0·ł	n _{ef} h/	h _{of} †				
Edge distance	2,0 > h /	h _{ef} > 1,3	4,6·h _{ef} -						
c _{cr,sp} [mm] for	h / h _{ef} ≤ 1,3		2,26-	,0·h _{ef} 2,	c _{cr,sp}				
Spacing	S _{cr,sp}	[mm]			2·c _{cr,sp}				

¹⁾ In absence of national regulations.

Injection System Hilti HIT-HY 200-A	
Performances Characteristic values of resistance under tension loads in concrete Design according to "EOTA Technical Report TR 029, Edition September 2010"	Annex C5

Table C6: Characteristic values of resistance for Hilti tension anchor HZA, HZA-R under shear loads in concrete

Hilti HIT-HY 200-A with HZA, HZA-	R		M12	M16	M20	M24	M27	
Steel failure without lever arm								
Characteristic resistance HZA	$V_{Rk,s}$	[kN]	23	43	67	97	126	
Characteristic resistance HZA-R	$V_{Rk,s}$	[kN]	31	55	86	124	-	
Partial safety factor	γ _{Ms} 1)	[-]	[-] 1,5					
Steel failure with lever arm		•						
Characteristic resistance HZA	$M^0_{Rk,s}$	[Nm]	72	183	357	617	915	
Characteristic resistance HZA-R	$M^0_{Rk,s}$	[Nm]	97	234	457	790	-	
Partial safety factor	γ _{Ms} 1)	[-]			1,5			
Concrete pry-out failure								
Factor in equation (5.7) of Technical R TR 029 for the design of bonded anch		[-]	2,0					
Concrete edge failure								
The value of h _{ef} for calculation in equations (5.8a) and (5.8b) of Technical Report TR 029 is limited by:				min ((h _{nom} ; 12 ·	d _{nom})		
Outside diameter of anchor	d _{nom}	[mm]	12	16	20	24	27	

¹⁾ In absence of national regulations.

Injection System Hilti HIT-HY 200-A	
Performances Characteristic values of resistance under shear loads in concrete Design according to "EOTA Technical Report TR 029, Edition September 2010"	Annex C6

Table C7: Characteristic values of resistance for rebar under tension loads in concrete

HIT-HY 200-A with rebar			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Installation safety factor	γ2	[-]						1,0					
Steel failure													
Characteristic resistance for B500B acc. to DIN 488:2009		s [kN]	28	43	62	85	111	173	270	292	339	388	442
Partial safety factor $^{3)}$ $\gamma_{\text{Ms,N}}^{-1}$ [-]								1,4					
Combined pull-out and Concrete cone failure													
Diameter of rebar	d	[mm]	8	10	12	14	16	20	25	26	28	30	32
Characteristic bond resistance in non-cracked concrete C20/25													
Temperature range I: 40°C/24°C	$ au_{Rk,ucr}$	[N/mm²]						12					
Temperature range II: 80°C/50°C	$ au_{Rk,ucr}$	[N/mm²]	10										
Temperature range III: 120°C/72°C	$ au_{Rk,ucr}$	[N/mm²]	8,5										
Characteristic bond resistand	ce in cracked	d concrete	C20/	25									
Temperature range I: 40°C/24°C	$ au_{Rk,cr}$	[N/mm²]	- 5 7										
Temperature range II: 80°C/50°C	$ au_{Rk,cr}$	[N/mm²]	-	4					5,5				
Temperature range III: 120°C/72°C	$ au_{Rk,cr}$	[N/mm²]	-	3,5					5				
		C30/37						1,04					
Increasing factor for τ_{Rk} in concrete	Ψc	C40/45						1,07					
		C50/60						1,1					
Splitting failure relevant fo	r non-crack	ed concr	ete										
	h / h _{ef}	≥ 2,0	1,0·h _{ef}										
Edge distance c _{cr,sp} [mm] for	$2.0 > h / h_{ef} > 1.3$ $h / h_{ef} \le 1.3$		4,6·h _{ef} - 1,8·h										
			2,26·h _{ef}				1		1,0·h _{ef}	2,2	26·h _{ef}	C _{cr,sp}	
Spacing	S _{cr,s}	p [mm]						2 c _{cr,sp})				

¹⁾ In absence of nationa regulations

The partial safety factor $\gamma_{Ms,N}$ that do not fulfill the requirements acc. to DIN 488 shall be calculated acc. Technical Report TR 029, Equation (3.3a).

Injection System Hilti HIT-HY 200-A	
Performances	Annex C7
Characteristic values of resistance under tension loads in concrete	
Design according to "EOTA Technical Report TR 029, Edition September 2010"	

The characteristic tension resistance N_{Rk,s} for rebars that do not fulfill the requirements acc. to DIN 488 shall be calculated acc. Technical Report TR 029, Equation (5.1).

Table C8: Characteristic values of resistance for rebar under shear loads in concrete

Concrete													
HIT-HY 200-A with rebar			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Steel failure without lever arm													
Characteristic resistance for rebar B500B acc. to DIN 488:2009-08 ²⁾	$V_{Rk,s}$	[kN]	14	22	31	42	55	86	135	146	169	194	221
Partial safety factor 4)	γ _{Ms,V} 1)	[-]						1,5					
Steel failure with lever arm													
Characteristic resistance for rebar B500B acc. to DIN 488:2009-08 ³⁾		[Nm]	33	65	112	178	265	518	1012	1139	1422	1749	2123
Concrete pry-out failure									•				
Factor in equation (5.7) of Technical Report TR 029 for the k [-] design of bonded anchors								2,0					
Concrete edge failure													
The value of h _{ef} for calculation in equations (5.8a) and (5.8b) of Technical Report TR 029 is limited by:						1	min (h	l _{ef} ; 12	· d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	26	28	30	32

¹⁾ In absence of national regulations.

Injection System Hilti HIT-HY 200-A	
Performances	Annex C8
Characteristic values of resistance under shear loads in concrete	
Design according to "EOTA Technical Report TR 029, Edition September 2010"	

The characteristic shear resistance V_{Rk,s} for rebars that do not fulfill the requirements acc. DIN 488 shall be calculated acc. Technical Report TR 029, Equation (5.5).

The characteristic bending resistance M⁰_{Rk,s} for rebars that do not fulfil the requirements acc. DIN 488 shall be calculated acc. Technical Report TR 029, Equation (5.6b).

The partial safety factor $\gamma_{Ms,V}$ for rebar that do not fulfill the requirements acc. to DIN 488 shall be calculated acc. Technical Report 029, Equation (3.3b) or (3.3c).

Table C9: Displacements under tension load

Hilti HIT-HY 200- AM 8.8	М8	M10	M12	M16	M20	M24	M27	M30		
Non-cracked concrete temperature range I : 40°C / 24°C										
Disalassant	δ_{N0}	[mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,06	0,07	0,07	0,08
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]	0,04	0,05	0,06	0,08	0,10	0,13	0,14	0,16
Non-cracked concrete temperature range II : 80°C / 50°C										
Disalessant	δ_{N0}	[mm/(N/mm²)]	0,03	0,04	0,05	0,06	0,08	0,09	0,10	0,12
Displacement	$\delta_{N^{\infty}}$	[mm/(N/mm²)]	0,04	0,05	0,06	0,09	0,11	0,13	0,15	0,16
Non-cracked cond	crete tempera	ture range III : 120°C /	72°C						•	
Displacement	δ_{N0}	[mm/(N/mm²)]	0,04	0,05	0,06	0,08	0,10	0,12	0,13	0,16
	$\delta_{N\infty}$	[mm/(N/mm²)]	0,04	0,05	0,07	0,09	0,11	0,13	0,15	0,17
Cracked concrete	temperature	range I : 40°C / 24°C								
Diantagement	δ_{N0}	[mm/(N/mm²)]				0,	07			
Displacement	$\delta_{N^{\infty}}$	[mm/(N/mm²)]				0,	16			
Cracked concrete	temperature	range II : 80°C / 50°C								
Displacement	δ_{N0}	[mm/(N/mm²)]				0,	10			
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]				0,:	22			
Cracked concrete	temperature	range III : 120°C / 72°0								
Dienlesement	δ_{N0}	[mm/(N/mm²)]				0,	13			
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]				0,	29			

Table C10: Displacements under shear load

Hilti HIT-HY 200-A with threaded rod, HIT-V				M10	M12	M16	M20	M24	M27	M30
Displacement	δ_{V0}	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
	$\delta_{V\infty}$	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

Injection System Hilti HIT-HY 200-A	
Performances Displacements with threaded rod, HIT-V and AM 8.8	Annex C9

Table C11: Displacements under tension load

Hilti HIT-HY 200-A	with F	HIS-(R)N	М8	M10	M12	M16	M20				
Non-cracked concre	ete temp	perature range I :	40°C / 24°C	•							
Diaplacement	δ_{N0}	[mm/(N/mm²)]	0,03	0,05	0,06	0,07	0,08				
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]	0,06	0,09	0,11	0,13	0,14				
Non-cracked concre	Non-cracked concrete temperature range II : 80°C / 50°C										
Displacement	δ_{N0}	[mm/(N/mm²)]	0,05	0,06	0,08	0,10	0,11				
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]	0,07	0,09	0,11	0,13	0,15				
Non-cracked concre	ete temp	perature range III :	120°C / 72°0								
Displacement -	δ_{N0}	[mm/(N/mm²)]	0,06	0,08	0,10	0,13	0,14				
	$\delta_{N\infty}$	[mm/(N/mm²)]	0,07	0,09	0,11	0,14	0,15				
Cracked concrete to	emperat	ture range I : 40°C	: / 24°C								
Displacement	δ_{N0}	[mm/(N/mm²)]			0,11						
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]			0,16						
Cracked concrete te	emperat	ture range II : 80°0	C / 50°C								
Displacement	δ_{N0}	[mm/(N/mm²)]			0,15						
ызріасеніені	$\delta_{N\infty}$	[mm/(N/mm²)]			0,22						
Cracked concrete te	emperat	ture range III : 120	°C / 72°C								
Displacement	δ_{N0}	[mm/(N/mm²)]			0,20						
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]			0,29						

Table C12: Displacements under shear load

Hilti HIT-HY 200-A with HIS-(R)N			M8	M10	M12	M16	M20
Displacement	δ_{V0}	[mm/kN]	0,06	0,06	0,05	0,04	0,04
	$\delta_{V^{\infty}}$	[mm/kN]	0,09	0,08	0,08	0,06	0,06

Injection System Hilti HIT-HY 200-A	
Performances Displacements with HIS-(R)N	Annex C10

Table C13: Displacements under tension load

emperature r $\delta_{ extsf{N0}}$	ange I : 40°C / 24°C [mm/(N/mm²)]	0.00				
	[mm/(N/mm²)]	0.00				
$\delta_{N^{\infty}}$		0,03	0,04	0,06	0,07	0,08
	[mm/(N/mm²)]	0,06	0,08	0,13	0,13	0,15
Non-cracked concrete temperature range II : 80°C / 50°C						
δ_{N0}	[mm/(N/mm²)]	0,05	0,06	0,08	0,10	0,11
$\delta_{N^{\infty}}$	[mm/(N/mm²)]	0,06	0,09	0,14	0,14	0,15
emperature r	ange III : 120°C / 72°C	;				
δ_{N0}	[mm/(N/mm²)]	0,06	0,08	0,10	0,12	0,14
$\delta_{N^{\infty}}$	[mm/(N/mm²)]	0,07	0,09	0,14	0,14	0,16
erature range	e I : 40°C / 24°C					
δ_{N0}	[mm/(N/mm²)]			0,11		
$\delta_{N^{\infty}}$	[mm/(N/mm²)]			0,16		
erature range	e II : 80°C / 50°C					
δ_{N0}	[mm/(N/mm²)]			0,15		
$\delta_{N^{\infty}}$	[mm/(N/mm²)]			0,22		
erature range	e III : 120°C / 72°C					
δ_{N0}	[mm/(N/mm²)]			0,20		
$\delta_{N\infty}$	[mm/(N/mm²)]			0,29		
	δ_{N0} $\delta_{N\infty}$ emperature range δ_{N0} $\delta_{N\infty}$ erature range δ_{N0} $\delta_{N\infty}$ erature range δ_{N0} $\delta_{N\infty}$ erature range δ_{N0} $\delta_{N\infty}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table C14: Displacements under shear load

Hilti HIT-HY 200-A with HZA, HZA-R				M16	M20	M24	M27
Displacement	δ_{V0}	[mm/kN]	0,05	0,04	0,04	0,03	0,03
Displacement	$\delta_{V\infty}$	[mm/kN]	0,08	0,06	0,06	0,05	0,05

Injection System Hilti HIT-HY 200-A	
Performances Displacements with HZA and HZA-R	Annex C11

Table C15: Displacements under tension load

Hilti HIT-HY 200-A w	vith re	bar	ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Non-cracked concrete	tempe	erature range I :	40°C /	24°C									
Diamlacament	δ_{N0}	[mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,04	0,06	0,07	0,08	0,08	0,09	0,09
Displacement -	$\delta_{N\infty}$	[mm/(N/mm²)]	0,04	0,05	0,06	0,07	0,08	0,10	0,13	0,14	0,15	0,16	0,17
Non-cracked concrete	tempe	erature range II :	80°C	/ 50°C									
	δ_{N0}	[mm/(N/mm²)]	0,03	0,04	0,05	0,05	0,06	0,08	0,10	0,11	0,11	0,12	0,12
_	$\delta_{N\infty}$	[mm/(N/mm²)]	0,04	0,05	0,06	0,07	0,09	0,11	0,14	0,15	0,15	0,16	0,17
Non-cracked concrete	tempe	erature range III	: 120°C / 72°C										
Dianlessment	δ_{N0}	[mm/(N/mm²)]	0,04	0,05	0,06	0,07	0,08	0,10	0,12	0,13	0,14	0,15	0,16
Displacement -	$\delta_{N\infty}$	[mm/(N/mm²)]	0,04	0,05	0,07	0,08	0,09	0,11	0,14	0,15	0,16	0,17	0,18
Cracked concrete tem	peratu	ire range I : 40°C	: / 24°(2									
Dianlacement	δ_{N0}	[mm/(N/mm²)]						0,11					
Displacement -	$\delta_{N\infty}$	[mm/(N/mm²)]						0,16					
Cracked concrete tem	peratu	ire range II : 80°0	C / 50°	С									
Displacement -	δ_{N0}	[mm/(N/mm²)]						0,15					
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]	0,22										
Cracked concrete tem	peratu	ire range III : 120	0°C / 72°C										
Displacement	δ_{N0}	[mm/(N/mm²)]	0,20										
Displacement -	$\delta_{N\infty}$	[mm/(N/mm²)]						0,29					

Table C16: Displacements under shear load

Hilti HIT-HY 200-A	vith rebar		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Dieplacement	δ_{V0}	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03	0,03
Displacement	δ_{V^∞}	[mm/kN]	0,09	0,08	0,07	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,04

Injection System Hilti HIT-HY 200-A	
Performances	Annex C12
Displacements with rebar	

Seismic design shall be carried out according to the TR 045 "Design of Metal Anchors Under Seismic Action"

Table C17: Characteristic values of resistance for threaded rod, HIT-V-... -..., AM 8.8 under tension loads for seismic performance category C1

HIT-HY 200-A with threaded rod, HIT	-V, AM	8.8	M8	M10	M12	M16	M20	M24	M27	M30
Steel failure										
HIT-V-5.8(F), threaded rod 5.8	$N_{Rk,s,seis}$	[kN]	-	29	42	79	123	177	230	281
HIT-V-8.8(F), threaded rod 8.8	$N_{Rk,s,seis}$	[kN]	-	46	67	126	196	282	367	449
HIT-V-R, threaded rod A4-70	$N_{Rk,s,seis}$	[kN]	-	41	59	110	172	247	230	281
HIT-V-HCR, threaded rod HCR-80	$N_{Rk,s,seis}$	[kN]	-	46	67	126	196	247	321	393
Combined pullout and concrete con	e failure									
Characteristic bond resistance in crack	ed concre	te C20/25								
Temperature range I: 40 °C/24 °C	$ au_{Rk,seis}$	[N/mm ²]	-	5,2			7	,0		
Temperature range II: 80 °C/50 °C	[N/mm ²]	-	3,9			5	,7			
Temperature range III: 120 °C/72 °C	[N/mm ²]	-	3,5			4	,8			

Table C18: Characteristic values of resistance for threaded rod, HIT-V-... and AM 8.8 under shear loads for seismic performance category C1

HIT-HY 200-A with threaded rod, HIT	Г-V, AM 8.8		М8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
HIT-V 5.8(F), threaded rod 5.8	$V_{Rk,s,seis}$	[kN]	-	11	15	27	43	62	81	98
HIT-V 8.8(F), threaded rod 8.8	$V_{Rk,s,seis}$	[kN]	-	16	24	44	69	99	129	157
HIT-V R, threaded rod A4-70	$V_{Rk,s,seis}$	[kN]	-	14	21	39	60	87	81	98
HIT-V HCR, threaded rod HCR-80	$V_{Rk,s,seis}$	[kN]	-	16	24	44	69	87	113	137

Table C19: Displacements under tension load for seismic performance category C1

HIT-HY 200-A with threaded rod, HIT-V, AM 8.8		M8	M10	M12	M16	M20	M24	M27	M30	
Displacement 1)	$\delta_{\text{N,seis}}$	[mm]	-	0,8	0,8	0,8	0,8	0,8	0,8	0,8

Maximum displacement during cycling (seismic event).

Table C20: Displacements under shear load for seismic performance category C1

HIT-HY 200-A with threaded rod, HIT-V, AM 8.8		М8	M10	M12	M16	M20	M24	M27	M30	
Displacement 1)	$\delta_{V,seis}$	[mm]	-	3,5	3,8	4,4	5,0	5,6	6,1	6,5

Maximum displacement during cycling (seismic event).

Injection System Hilti HIT-HY 200-A	
Performances Characteristic values for seismic performance category C1 and displacements	Annex C13
Design according to "EOTA Technical Report TR045, Edition February 2013 "	

Table C21: Characteristic values of resistance for Hilti tension anchor HZA, HZA-R under tension loads for seismic performance category C1

			-										
HIT-HY 200-A with Hil	ti tension anc	hor HZA, F	IZA-R	M12	M16	M20	5 194 253 3 248 - ,4						
Steel failure													
Characteristic resistance	e HZA	$N_{Rk,s,seis}$	[kN]	46	86	135	194	253					
Characteristic resistance	e HZA-R	$N_{Rk,s,seis}$	[kN]	62	111	173	248	-					
Partial safety factor		γMs,N,seis	· [-]			1,4							
Combined pull-out and	d concrete con	e failure ⁾											
Diameter of rebar		d	[mm]	12	16	20	25	28					
Characteristic bond resis	stance in cracke	ed concrete	C20/25										
Temperature range I:	40°C/24°C	$ au_{Rk,cr}$	[N/mm²]			6,1							
Temperature range II:	80°C/50°C	$ au_{Rk,cr}$	[N/mm²]			4,8							
Temperature range III:	120°C/72°C	$ au_{Rk,cr}$	[N/mm²]			4,4							

In absence of national regulations.

Table C22: Characteristic values of resistance for Hilti tension anchor HZA, HZA-R under shear loads for seismic performance category C1

HIT-HY 200-A with Hilti tension ar	\-R	M12	M16	M20	M24	M27	
Steel failure without lever arm							
Characteristic resistance HZA	$V_{Rk,s,seis}$	[kN]	16	30	47	68	88
Characteristic resistance HZA-R	$V_{Rk,s,seis}$	[kN]	22	39	60	124	-
Partial safety factor	1) γMs,√,seis	[-]			1,5		

In absence of national regulations.

Table C23: Displacements under tension load for seismic performance category C1

HIT-HY 200-A with Hilti tension ancho	or HZA, H	IZA-R	M12	M16	M20	M24	M27
Displacement 1)	$\delta_{\text{N,seis}}$	[mm]	1,3	1,3	1,3	1,3	1,3

¹⁾ Maximum displacement during cycling (seismic event).

Table C24: Displacements under shear load for seismic performance category C1

HIT-HY 200-A with Hilti tension ancho	or HZA, H	IZA-R	M12	M16	M20	M24	M27
Displacement 1)	$\delta_{\text{V,seis}}$	[mm]	3,8	4,4	5,0	5,6	6,1

Maximum displacement during cycling (seismic event).

Injection System Hilti HIT-HY 200-A	
Performances Characteristic values for seismic performance category C1 and displacements Design according to "EOTA Technical Report TR 045, Edition February 2013"	Annex C14

Table C25: Characteristic values of resistance for rebar under tension loads for seismic performance category C1

HIT-HY 200-A with rebar			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Steel failure													
Characteristic resistance for re B500B acc. to DIN 488:2009-	ebar 08 ¹⁾ N _{Rk}	seis [kN]	-	43	62	85	111	173	270	292	339	388	442
Combined pull-out and Con													
Diameter of rebar	d	[mm]	-	10	12	14	16	20	25	26	28	30	32
Characteristic bond resistance	e in crack	ed concre	te C2	0/25									
Temperature range I: 40°C/24°C	$ au_{Rk,cr}$	[N/mm²]	-	4,4				6,1					
Temperature range II: 80°C/50°C	$ au_{Rk,cr}$	[N/mm²]	-	3,5				4,8					
Temperature range III: 120°C/72°C	$ au_{Rk,cr}$	[N/mm²]	-	3				4,4					

The characteristic tension resistance $N_{Rk,s,seis}$ for rebars that do not fulfil the requirements acc. DIN 488 shall be calculated acc. Technical Report TR 029, Equation (5.1), $N_{Rk,s,seis} = N_{Rk,s}$.

Table C26: Characteristic values of resistance for rebar under shear loads for seismic performance category C1

HIT-HY 200-A with rebar	ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Steel failure without lever arm											
Characteristic resistance for rebar B500B acc. to DIN 488:2009-08 V _{Rk,s,seis} [kN]	-	15	22	29	39	60	95	102	118	135	165

The characteristic shear resistance $V_{Rk,s,seis}$ for rebars that do not fulfil the requirements acc. DIN 488 shall be calculated acc. Technical Report TR 029, Equation (5.5), $V_{Rk,s,seis} = 0.7 \times V_{Rk,s}$.

Table C27: Displacements under tension load for seismic performance category C1

Hilti HIT-HY 200-A with rebar			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Displacement 1)	$\delta_{\text{N,seis}}$	[mm]	1	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3

Maximum displacement during cycling (seismic event).

Table C28: Displacements under shear load for seismic performance category C1

Hilti HIT-HY 200-A with rebar			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Displacement 1)	$\delta_{V,seis}$	[mm]	1	3,5	3,8	4,1	4,4	5,0	5,8	6,2	6,2	6,8	6,8

Maximum displacement during cycling (seismic event).

Injection System Hilti HIT-HY 200-A	
Performances Characteristic values for seismic performance category C1 and displacements Design according to "EOTA Technical Report TR 045, Edition February 2013"	Annex C15

Tabelle C29: Charakteristische Werte der Zugtragfähigkeit für Gewindestangen, HIT-V-... und AM 8.8 bei Erdbebenbeanspruchung, Leistungskategorie C2

HIT-HY 200-A mit Gewindestange, H	M 8.8	M8	M10	M12	M16	M20	M24	M27	M30	
Stahlversagen										
HIT-V (-F) 8.8, AM (HDG) 8.8 Handelsübliche Gewindestange 8.8 nur galvanisch verzinkt	$N_{Rk,s,seis}$	[kN]		-		126	196	282		-
Kombiniertes Versagen durch Hera	usziehen ι	ınd Beton	ausbi	uch						
Charakteristische Verbundtragfähigker (TE-CD und TE-YD)	it in gerisse	enem Beto	n C20	/25, in	hamm	nergeb	ohrter	n Bohr	löcher	n
Temperaturbereich I: 40 °C/24 °C	τ _{Rk,seis}	[N/mm ²]		-		3,9	4,3	3,5		-
Temperaturbereich II: 80 °C/50 °C	τ _{Rk,seis}	[N/mm ²]		-		3,3	3,7	2,9		-
Temperaturbereich III: 120 °C/72 °C	τ _{Rk,seis}	[N/mm ²]		-		2,8	3,2	2,5		-

Tabelle C30: Charakteristische Werte der Quertragfähigkeit für Gewindestangen, HIT-V-... und AM 8.8 bei Erdbebenbeanspruchung, Leistungskategorie C2

HIT-HY 200-A mit Gewindestange, H	IIT-V, AM	8.8	M8	M10	M12	M16	M20	M24	M27	M30
Stahlversagen ohne Hebelarm, Mon	tage mit Hilt	i Verfüll	-Set							
HIT-V 8.8, AM 8.8	$V_{Rk,s,seis}$	[kN]		-		46	77	103		-
Stahlversagen ohne Hebelarm, Montage ohne Hilti Verfüll-Set										
HIT-V 8.8, AM 8.8	$V_{Rk,s,seis}$	[kN]		-		40	71	90		-
HIT-V-F 8.8, AM HDG 8.8	$V_{Rk,s,seis}$	[kN]		-		30	46	66		-
Handelsübliche Gewindestange 8.8 galvanisch verzinkt	$V_{Rk,s,seis}$	[kN]		-		28	50	63		-

Injektionssystem Hilti HIT-HY 200-A	
Leistungsfähigkeit Charakteristische Werte bei Erdbebenbeanspruchung, Leistungskat. C2 Bemessung nach "EOTA Technical Report TR045, Edition Februar 2013 "	Anhang C16

Table C31: Displacements under tension load for seismic performance category C2

HIT-HY 200-A with threaded rod, HIT-V, AM 8.8			M8	M10	M12	M16	M20	M24	M27	M30
Displacement DLS, HIT-V (-F) 8.8, AM (HDG) 8.8	$\delta_{\text{N,seis(DLS)}}$	[mm]		-		0,2	0,5	0,4		-
Displacement ULS, HIT-V (-F) 8.8, AM (HDG) 8.8	$\delta_{N,seis(ULS)}$	[mm]		-		0,6	0,8	1.0		

Table C32: Displacements under shear load for seismic performance category C2

HIT-HY 200-A with threaded rod, HIT-V	/, AM 8.8		M8	M10	M12	M16	M20	M24	M27	M30
Installation with Hilti Filling Set										
Displacement DLS, HIT-V 8.8, AM 8.8	$\delta_{V,seis(DLS)}$	[mm]		-		1,2	1,4	1,1		-
Displacement ULS, HIT-V 8.8, AM 8.8	$\delta_{V, seis(ULS)}$	[mm]		-		3,2	3,8	2,6		-
Installation without Hilti Filling Set										
Displacement DLS, HIT-V 8.8, AM 8.8	$\delta_{V, \text{seis}(\text{DLS})}$	[mm]		-		3,2	2,5	3,5		-
Displacement DLS, HIT-V-F 8.8, AM HDG 8.8	$\delta_{V,seis(DLS)}$	[mm]		-		2,3	3,8	3,7		-
Displacement ULS, HIT-V, 8.8 AM 8.8	$\delta_{V, \text{seis}(\text{ULS})}$	[mm]		-		9,2	7,1	10,2		-
Displacement ULS, HIT-V-F 8.8, AM HDG 8.8	$\delta_{\text{V,seis}(\text{ULS})}$	[mm]		-		4,3	9,1	8,4		-

Injection System Hilti HIT-HY 200-A	
Performances	Annex C17
Displacements for seismic performance category C2 Design according to "EOTA Technical Report TR 045, Edition February 2013"	