

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-13/1036 of 15 December 2014

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik Injection system Hilti HIT-HY 270 Injection system for use in masonry Hilti AG Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

40 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal Injection Anchors for Use in Masonry", ETAG 029, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik

Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt.de | www.dibt.de

European Technical Assessment ETA-13/1036 English translation prepared by DIBt

Page 2 of 40 | 15 December 2014

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Specific part

1 Technical description of the product

The Injection system Hilti HIT-HY 270 for masonry is a bonded anchor (injection type) consisting of a mortar foil pack with injection mortar Hilti HIT-HY 270, a perforated sieve sleeve and an anchor rod with hexagon nut and washer in the range of M8 to M16 or an internal threaded sleeve in the range of M8 to M12. The steel elements are made of zinc coated steel, stainless steel or high corrosion resistant steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond and/or mechanical interlock between steel element, injection mortar and masonry.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for steel elements	See Annex C2
Characteristic resistance for anchors in masonry units	See Annex C4 – C19
Displacements under shear and tension loads	See Annex C4 – C19
Reduction Factor for job site tests (β-Factor)	See Annex C1
Edge distances and spacing	See Annex C3 – C18
Group factor for group fastenings	See Annex C3 – C18

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Page 4 of 40 | 15 December 2014

European Technical Assessment

ETA-13/1036

English translation prepared by DIBt

3.5 Protection against noise (BWR 5) Not applicable.

3.6 Energy economy and heat retention (BWR 6) Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 17 February 1997 (97/177/EC) (OJ L 073 of 14.03.97 p. 24-25), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal injection anchors for use in masonry	For fixing and/or supporting to masonry, structural elements (which contributes to the stability of the works) or heavy units	_	1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 15 December 2014 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:* Wittstock

Installed condition

Figure A1: Hollow and solid brick with threaded rod HIT-V-... and one sieve sleeve HIT-SC (see Table B5), or with internal threaded sleeve HIT-IC and single sieve sleeve HIT-SC (see Table B7)

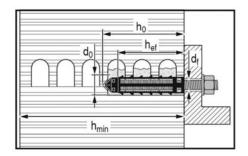


Figure A2: Hollow and solid brick with threaded rod HIT-V-... and two sieve sleeves HIT-SC for deeper embedment depth (see Table B6)

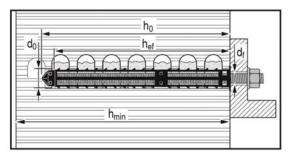
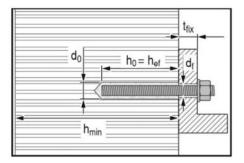
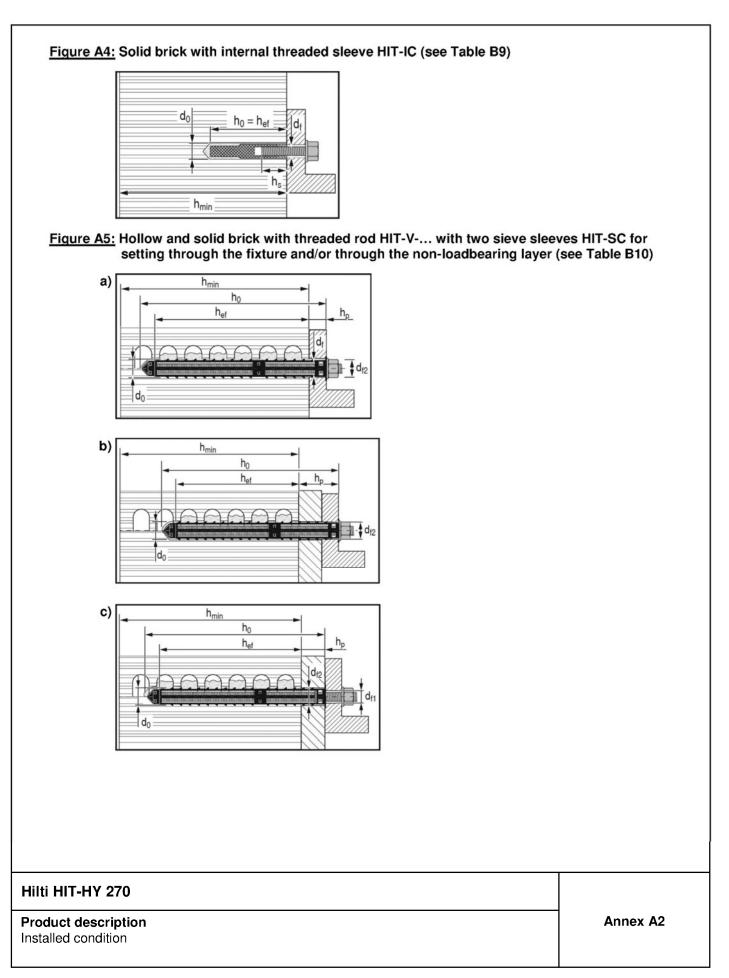
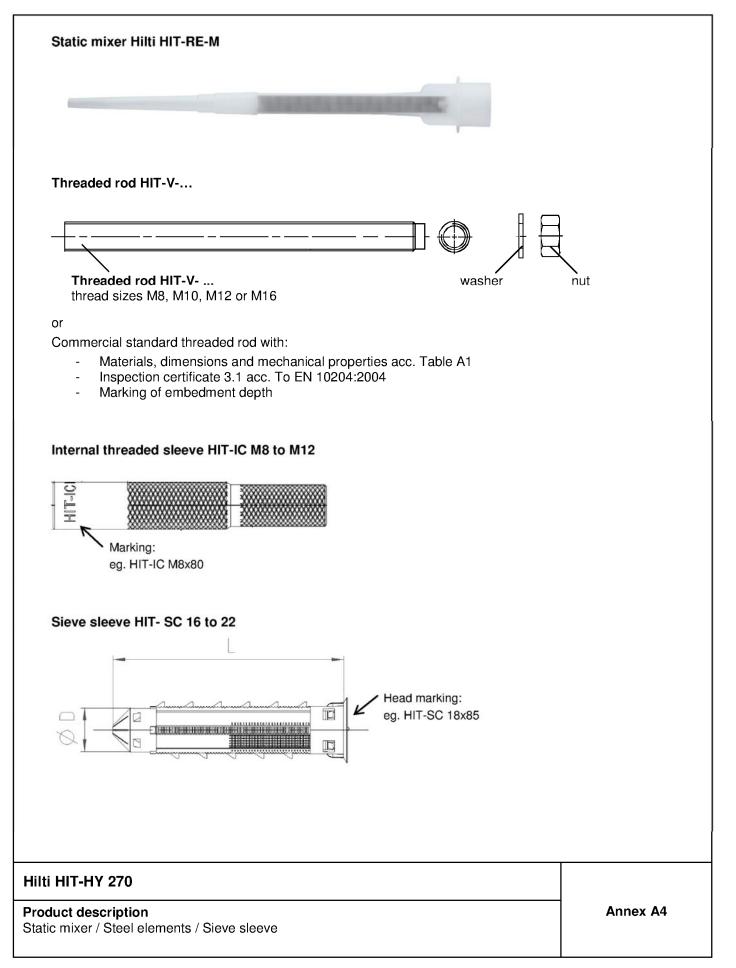




Figure A3: Solid brick with threaded rod HIT-V-...(see Table B8)

Hilti HIT-HY 270 Annex A1 Product description Annex A1


Page 7 of European Technical Assessment ETA-13/1036 of 15 December 2014

Product description: Injection mortar and steel elements	
Injection mortar Hilti HIT-HY 270: hybrid system with aggregate 330 ml and 500 ml	
Marking HILTI HY-270 Production number and production line Expiry date mm/yyyy	3
Dispenser	
HDM 330/500	
HDE 500-A	
lilti HIT-HY 270	
roduct description njection mortar / Dispenser	Annex A3

Page 8 of European Technical Assessment ETA-13/1036 of 15 December 2014

Designation	Material	
Metal parts made c	of zinc coated steel	
Threaded rod HIT-V-5.8(F)	$ \begin{array}{l} \mbox{Strength class 5.8, } f_{uk} = 500 \mbox{ N/mm}^2, f_{yk} = 400 \mbox{ N/mm}^2, \\ \mbox{Elongation at fracture (} I_0 = 5d) > 8\% \mbox{ ductile} \\ \mbox{Electroplated zinc coated} \geq 5 \mu m, \mbox{ (F) Hot dip galvanized} \geq 45 \mu m \end{array} $	1
Threaded rod HIT-V-8.8(F)	$ \begin{array}{l} \mbox{Strength class 8.8 , } f_{uk} = 800 \mbox{ N/mm^2, } f_{yk} = 640 \mbox{ N/mm^2, } \\ \mbox{Elongation at fracture (} I_0 = 5d) > 8\% \mbox{ ductile } \\ \mbox{Electroplated zinc coated} \geq 5 \mu m, \mbox{ (F) Hot dip galvanized} \geq 45 \mu m \end{array} $	1
Washer	Electroplated zinc coated \ge 5 μ m Hot dip galvanized \ge 45 μ m	
Nut	Strength class of nut adapted to strength class of threaded rod Electroplated zinc coated \geq 5 $\mu m,$ Hot dip galvanized \geq 45 μm	
Internal threaded sleeve HIT-IC	$\begin{array}{l} f_{uk} = 490 \ N/mm^2, \ f_{yk} = 390 \ N/mm^2 \\ Elongation \ at \ fracture \ (I_0 = 5d) > 8\% \ ductile \\ Electroplated \ zinc \ coated \geq 5 \ \mu m \end{array}$	
Metal parts made o	of stainless steel	
Threaded rod HIT-V-R	Strength class 70 f_{uk} = 700 N/mm ² , f_{yk} = 450 N/mm ² , Elongation at fracture (l_0 =5d) > 8% ductile Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 E	EN 10088-1: 2014
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 E	N 10088-1: 2014
Nut	Strength class of nut adapted to strength class of threaded rod Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 E	EN 10088-1: 2014
Metal parts made o	of high corrosion resistant steel	
Threaded rod HIT-V-HCR	$ f_{uk} = 800 \text{ N/mm}^2, \ f_{yk} = 640 \text{ N/mm}^2, \\ Elongation at fracture (I_0=5d) > 8% \ ductile \\ High corrosion resistant steel 1.4529, 1.4565 EN 10088-1: 2014 $	
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1: 2014	
Nut	Strength class of nut adapted to strength class of threaded rod High corrosion resistant steel 1.4529, 1.4565 EN 10088-1: 2014	
Plastic parts		
Sieve sleeve HIT-SC	Frame: FPP 20T Sieve: PA6.6 N500/200	
HIT-HY 270		

Specifications of intended use

Base materials:

- Solid brick masonry (use category b), according to Annex B3.
 Note: The characteristic resistances are also valid for larger brick sizes and larger compressive strengths of the masonry unit.
- Hollow brick masonry (use category c), according to Annex B3 and B5.
- Mortar strength class of the masonry: M2,5 at minimum according to EN 998-2: 2010.
- For masonry made of other solid, hollow or perforated bricks, the characteristic resistance of the anchor may be determined by job site tests according to ETAG 029, Annex B under consideration of the β-factor according to Annex C1, Table C1.

Table B1: Overview use categories

Anchorages s	subject to:	HIT-HY 270 wit	h HIT-V or HIT-IC				
		in solid bricks	in hollow bricks				
Hole drilling		hammer mode	rotary mode				
Static and qua	si static loading	Annex : C2 (steel), C5, C7, C9, C11	Annex : C2 (steel), C 13, C 15, C17, C19				
Use category: structure	dry or wet	 Category d/d - Installation and use in structures subject to dry internal conditions. Category w/d - Installation in dry or wet substrate and use in structure subject to dry internal conditions (except calcium silicate bricks). Category w/w - Installation and use in structures subject to dry or wet environmental conditions (except calcium silicate bricks). 					
Installation dire Masonry	ection	ho	rizontal				
Use category		b (solid masonry)	c (hollow or perforated masonry)				
Temperature in the base material at installation		+5° C to +40° C (Table B11)	-5° C to +40° C (Table B12)				
Temperature In-service range Ta:		-411 *1.10 ±411 *1.	nax. long term temperature +24 °C and nax. short term temperature +40 °C)				
temperature	Temperature range Tb:		nax. long term temperature +50 °C and nax. short term temperature +80 °C)				

Hilti HIT-HY 270

Intended Use Specifications

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal conditions, if other particular aggressive conditions exist (high corrosion resistant steel). Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of

seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing products are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to supports, etc.).
- Anchorages under static or quasi-static loading are designed in accordance with: ETAG 029, Annex C, Design method A

Installation:

 Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Hilti HIT-HY 270

Intended Use Specifications

Brick type	type Picture Brick size [mm]			Bulk density [kg/dm³]	Annex	
Solid clay brick EN 771-1		≥ 240x115x113	12	2,0	C4/C5	
Solid calcium silicate brick EN 771-2		≥ 240x115x113	12 / 28	2,0	C6/C7	
Solid light weight concrete brick EN 771-3		≥ 240x115x113	4 / 6	0,9	C8/C9	
Solid normal weight concrete brick EN 771-3		≥ 240x115x113	6/16	2,0	C10/C11	
Hollow clay brick EN 771-1		300x240x238	12 / 20	1,4	C12/C13	
Hollow calcium silicate brick EN 771-2	100 M	248x240x248	12 / 20	1,4	C14/C15	
Hollow lightweight concrete brick EN 771-3	-	495x240X238	2/6	0,7	C16/C17	
Hollow normal weight concrete brick EN 771-3	100	500x200x200	4 / 10	0,9	C18/C19	

Hilti HIT-HY 270

Intended Use Brick types and properties

Brick type	Picture	Threaded rod HIT-V	HIT-IC	Threaded rod HIT-V with HIT-SC	HIT-IC with HIT-SC	Annex	
Solid clay brick EN 771-1		M8 to M16 h _{ef} = 50 mm to 300 mm	M8 to M12	M8 to M16 h _{ef} = 80 mm to 160 mm	M8 to M12	C4/C5	
Solid calcium silicate brick EN 771-2		M8 to M16 h _{ef} = 50 mm to 300 mm	50 mm $h_{ef} = 80 \text{ mm}$		M8 to M12	C6/C7	
Solid light weight concrete brick EN 771-3		M8 to M16 h _{ef} = 50 mm to 300 mm	mm $h_{ef} = 80 \text{ mm}$		M8 to M12	C8/C9	
Solid normal weight concrete brick EN 771-3		M8 to M16 h _{ef} = 50 mm to 300 mm	M8 to M12	M8 to M16 h _{ef} = 80 mm to 160 mm	M8 to M12	C10/C11	
Hollow clay brick EN 771-1		-	- M8 to M16 h _{ef} = 80 mm to 160 mm		M8 to M12	C12/C13	
Hollow calcium silicate brick EN 771-2	-	-	-	M8 to M16 h _{ef} = 80 mm to 160 mm	M8 to M12	C14/C15	
Hollow lightweight concrete brick EN 771-3		-	- M8 to M16 - h _{ef} = 80 mm to 160 mm		M8 to M12	C16/C17	
Hollow normal weight concrete brick EN 771-3	1110 - C	-	-	M8 to M16 h _{ef} = 50 mm to 160 mm	M8 to M12	C18/C19	

Hilti HIT-HY 270

Intended Use

Fastening elements and corresponding brick types

Table B4: Details of hollow bricks		
Hollow clay brick EN 771-1	Hollow normal weight concrete brick EN 771-3	- THE
Rapis Ziegel Hlz 12-1,4- 10DF	Parpaing creux B40	
	30 133 15 133 15	13330_
		15 75 15 75 15
Hollow calcium silicate brick EN 771-2	Hollow lightweight concrete brick EN 771-3	
KS Wemding KSL-R(P) 12-1,4 8DF	Knobel Betonwerk Hbl 4-0,8-500x240x238	
		45 15 15 15 15 15 15 15 15 15 1
Hilti HIT-HY 270		
Intended Use Details of hollow bricks		Annex B5

Table B5: Installation parameters of threaded rod HIT-V-... with one sieve sleeve HIT-SC in hollow brick and solid brick (Figure A1)

HIT-V	and announcem		M	8	M	10	M	12	M	16
with HIT-SC	*****		16x50	16x85	16x50	16x85	18x50	18x85	22x50	22x85
Nominal diameter of drill bit	do	[mm]	16	16	16	16	18	18	22	22
Drill hole depth	ho	[mm]	60	95	60	95	60	95	60	95
Effective embedment depth	h _{ef}	[mm]	50	80	50	80	50	80	50	80
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	9	12	12	14	14	18	18
Minimum wall thickness	h _{min}	[mm]	80	115	80	115	80	115	80	115
Brush HIT-RB	-	[-]	16	16	16	16	18	18	22	22
Number of strokes HDM	-	[-]	4	6	4	6	4	8	6	10
Number of strokes HDE 500-A	-	[-]	3	5	3	5	3	6	5	8
Maximum torque moment for all brick types except "parpaing creux"	T _{max}	[Nm]	3	3	4	4	6	6	8	8
Maximum torque moment for "parpaing creux"	T _{max}	[Nm]	2	2	2	2	3	3	6	6

Table B6: Installation parameters of threaded rod HIT-V-... with two HIT-SC in hollow brick and solid brick for deeper embedment depth (Figure A2)

HIT-V	(hannown)	m@m	M					
with HIT-SC	*****	* E	16x50+16x85	16x50+16x8516x85+16x851		16x85+16x85		
Nominal diameter of drill bit	do	[mm]	16	16	16	16		
Drill hole depth	h ₀	[mm]	145	180	145	180		
Effective embedment depth	h _{ef}	[mm]	130	160	130	160		
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	9	12	12		
Minimum wall thickness	h _{min}	[mm]	195	230	195	230		
Brush HIT-RB	-	[-]	16	16	16	16		
Number of strokes HDM	-	[-]	4+6	6+6	4+6	6+6		
Number of strokes HDE-500	-	[-]	3+5	5+5	3+5	5+5		
Maximum torque moment	T _{max}	[Nm]	3	3	4	4		

Table B6 continued

HIT-V	NAMES VALUES	m@m	M	12	M16		
with HIT-SC			18x50+18x85	18x85+18x85	22x50+22x85	22x85+22x85	
Nominal diameter of drill bit	do	[mm]	18	18	22	22	
Drill hole depth	ho	[mm]	145	180	145	180	
Effective embedment depth	h _{ef}	[mm]	130	160	130	160	
Maximum diameter of clearance hole in the fixture	d _f	[mm]	14	14	18	18	
Minimum wall thickness	h _{min}	[mm]	195	230	195	230	
Brush HIT-RB	-	[-]	18	18	22	22	
Number of strokes HDM	-	[-]	4+8	8+8	6+10	10+10	
Number of strokes HDE-500	-	[-]	3+6	6+6	5+8	8+8	
Maximum torque moment	T_{max}	[Nm]	6	6	8	8	

Hilti HIT-HY 270

Intended Use Installation parameters

Table B7: Installation parameters of internal threaded sleeve HIT-IC... with HIT-SC in hollow brick and solid brick (Figure A1)

HIT-IC			M8x80	M10x80	M12x80
with HIT-SC	<		16x85	18x85	22x85
Nominal diameter of drill bit	d ₀	[mm]	16	18	22
Drill hole depth	ho	[mm]	95	95	95
Effective embedment depth	h _{ef}	[mm]	80	80	80
Thread engagement length	hs	[mm]	875	1075	1275
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14
Minimum wall thickness	h _{min}	[mm]	115	115	115
Brush HIT-RB	-	[-]	16	18	22
Number of strokes HDM	-	[-]	6	8	10
Number of strokes HDE-500	-	[-]	5	6	8
Maximum torque moment	T _{max}	[Nm]	3	4	6

Table B8: Installation parameters of threaded rods HIT-V-... in solid brick (Figure A3)

HIT-V	0.000000	and and	M8	M10	M12	M16
Nominal diameter of drill bit	do	[mm]	10	12	14	18
Drill hole depth = Effective embedment depth	h ₀ = h _{ef}	[mm]	50300	50300	50300	50300
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18
Minimum wall thickness	h _{min}	[mm]	h ₀ +30	h ₀ +30	h ₀ +30	h ₀ +36
Brush HIT-RB		[-]	10	12	14	18
Maximum torque moment	T _{max}	[Nm]	5	8	10	10

Table B9: Installation parameters of internal threaded sleeve HIT-IC... in solid brick (Figure A4)

HIT-IC		0.5%)	M8x80	M10x80	M12x80
Nominal diameter of drill bit	d ₀	[mm]	14	16	18
Drill hole depth = Effective embedment depth	h ₀ = h _{ef}	[mm]	80	80	80
Thread engagement length	h₅	[mm]	875	1075	1275
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14
Minimum wall thickness	h _{min}	[mm]	115	115	115
Brush HIT-RB	-	[-]	14	16	18
Maximum torque moment	T _{max}	[Nm]	5	8	10

Hilti HIT-HY 270

Intended Use Installation parameters

Table B10: Installation parameters of threaded rod HIT-V-... with two sieve sleevesHIT-SC for setting through the fixture and/or through the non- loadbearinglayer in hollow brick and solid brick (Figure A5)

HIT-V	Saman	mBm	M	18	M10	
with HIT-SC	****					16x85+16x85
Nominal diameter of drill bit	d ₀	[mm]	16	16	16	16
Drill hole depth	h ₀	[mm]	145	180	145	180
Min. effective embedment depth	h _{ef,min}	[mm]	80	80	80	80
Max. thickness of non-loadbearing layer and fixture (through setting)	h _p , _{max}	[mm]	50	80	50	80
Max. diameter of clearance hole in the fixture (pre-setting)	d _{f1}	[mm]	9	9	12	12
Max. diameter of clearance hole in the fixture (through setting)	d _{f2}	[mm	17	17	17	17
Min. wall thickness	h _{min}	[mm]	h _{ef} +65	h _{ef} +70	h _{ef} +65	h _{ef} +70
Brush HIT-RB	-	[-]	16	16	16	16
Number of strokes HDM	-	[-]	4+6	6+6	4+6	6+6
Number of strokes HDE-500	-	[-]	3+5	5+5	3+5	5+5
Maximum torque moment for all brick types except "parpaing creux"	T _{max}	[Nm]	3	3	4	4
Maximum torque moment for "parpaing creux"	T _{max}	[Nm]	2	2	2	2

Table B10 continued

HIT-V	HONKOW	mDm	M	12	M	16
with HIT-SC			18x50+18x85	18x85+18x85	22x50+22x85	22x85+22x85
Nominal diameter of drill bit	d ₀	[mm]	18	18	22	22
Drill hole depth	ho	[mm]	145	180	145	180
Min. effective embedment depth	h _{ef,min}	[mm]	80	80	80	80
Max. thickness of non-loadbearing layer and fixture (for through setting)	h _{p,max}	[mm]	50	80	50	80
Max. diameter of clearance hole in the fixture (pre-setting)	d _{f1}	[mm]	14	14	18	18
Max. diameter of clearance hole in the fixture (through setting)	d _{f2}	[mm	19	19	23	23
Min. wall thickness	h _{min}	[mm]	h _{ef} +65	h _{ef} +70	h _{ef} +65	h _{ef} +70
Brush HIT-RB	-	[-]	18	18	22	22
Number of strokes HDM	-	[-]	4+8	8+8	6+10	10+10
Number of strokes HDE-500	-	[-]	5+8	8+8	5+8	8+8
Maximum torque moment for all brick types except "parpaing creux"	T _{max}	[Nm]	6	6	8	8
Maximum torque moment for "parpaing creux"	T_{max}	[Nm]	3	3	6	6

Hilti HIT-HY 270

Intended Use Installation parameters

Temperature in tl material T		Maximum working time t _{work}	minimum curing time t _{cure}
5 °C to 9	°C	10 min	2,5 h
10 °C to 19	°C	7 min	1,5 h
20 °C to 29	°C	4 min	30 min
30 °C to 40	°C	1 min	20 min

The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

Table B12: Maximum working time and minimum curing time for hollow bricks ¹⁾

Temperature in the base material T	Maximum working time t _{work}	minimum curing time t _{cure}
-5 °C to -1 °C	10 min	6 h
0 °C to 4 °C	10 min	4 h
5 °C to 9 °C	10 min	2,5 h
10 °C to 19 °C	7 min	1,5 h
20 °C to 29 °C	4 min	30 min
30 °C to 40 °C	1 min	20 min
) The curing time data are valid fo	r dry base material only	*

The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

Table B13: Cleaning alternatives

Manual Cleaning (MC):

Hilti hand pump for blowing out drill hole diameter $d_0 \le 18$ mm and drill hole depth up to $h_0 = 100$ mm

Compressed air cleaning (CAC):

Air nozzle with an orifice opening of minimum 3,5 mm in diameter for blowing out drill hole depth up to $h_0 = 300$ mm

Steel brush according to tables B5 to B10 depending on bore hole diameter for MC and CAC

Hilti HIT-HY 270	
Intended Use	A
Installation parameters	
Cleaning tools	

Hole drilling	If no significant resistance is felt over the entire depth of the	
	(e.g. in unfilled butt joints), the anchor should not be set at	this position.
Drilling mode		
	In hollow bricks (use category c): rotary mode Drill hole to the required embedment depth with a hammer of using an appropriately sized carbide drill bit.	drill set in rotation mode
do transmenter	In solid bricks (use category b): hammer mode Drill hole to the required embedment depth with a hammer mode using an appropriately sized carbide drill bit.	drill set in hammer
Drill hole cleaning	Just before setting the anchor, the drill hole must be free of Inadequate hole cleaning = poor load values.	dust and debris.
Manual Cleaning (MC) or	Compressed Air Cleaning (CAC) for hollow and solid brick	S
e bar 90 psi	Blow 2 times from the back of the hole (if needed with nozz hole length with hand pump (drill hole diameter $d_0 \le 18$ mm up to $h_0 = 100$ mm) or oil-free compressed air (min. 6 bar a depth up to $h_0 = 300$ mm) until return air stream is free of n	and drill hole depth t 6 m³/h; drill hole
2x 3x	Brush 2 times with the specified steel brush (tables B5 to B steel brush Hilti HIT-RB to the back of the hole (if needed w twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole \emptyset) - if not the brush is too small and must be replay brush diameter.	with extension) in a drill hole (brush $\emptyset \ge$
e bar 90 psi	Blow again with hand pump or compressed air 2 times until free of noticeable dust.	l return air stream is
iilti HIT-HY 270		
tended Use stallation instructions		Annex B10

	Single sieve sleeve HIT-SC Close lid	
	Two sieve sleeves HIT-SC Plug sieve sleeves together. Discard superfluous lid. Observe sieve sleeve order in case of different sieve sleeve sleeve has to be plugged into longer sleeve.	e lengths: shorter
	Insert sieve sleeve manually. When using two sieve sleeves, longer sieve sleeve has to b	e be inserted first.
or all applications		
	Tightly attach new Hilti mixing nozzle HIT-RE-M to foil pack not modify the mixing nozzle. Observe the instruction for use of the dispenser and foil pac Check foil pack holder for proper function. Do not use dama holders. Insert foil pack into foil pack holder and put holder i	ck. aged foil packs /
nject adhesive without f	orming air voids	
nstallation with sieve sle	eeve HIT-SC	
	Single sieve sleeve HIT-SC Insert mixer approximately 1 cm through the lid. Inject requi adhesive (see tables B5 to B10). Adhesive must emerge thr	red amount of rough the lid.
	Two sieve sleeves HIT-SC Use extension for installation with two sieve sleeves. Insert mixer approximately 1 cm through the tip of sieve sleeve required amount of adhesive into sieve sleeve "1" (see table Withdraw mixer to the point where it extends about 1 cm thr sleeve "2". Continue injecting in sieve sleeve "2" as describe	es B5 to B10). rough the lid into the
	Control amount of injected mortar. Adhesive has to protrude	e into the lid.
	After injection is completed, depressurize the dispenser by participation trigger. This will prevent further adhesive discharge from the	
Iti HIT-HY 270		
ended Use		Annex B11

	Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull. Fill holes approximately 2/3 full to ensure that the annular gap between the anchor and the base material is completely filled with adhesive along the embedment length.
CON	After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.
Setting the element:	Before use, verify that the element is dry and free of oil and other contaminants.
	HIT-Vor HIT-IC in hollow and solid bricks: Pre-setting (Figure A1 to Figure A4) Mark and set element to the required embedment depth until working time t _{work} has elapsed. The working time t _{work} is given in Table B11 and Table B12.
h _{et} +h _p	HIT-V in hollow and solid bricks: setting through the fixture (Figure A5a) or through the non-loadbearing layer and the fixture (Figure A5b) Mark and set element to the required embedment depth until working time t _{work} has elapsed. The working time t _{work} is given in Table B11 and Table B12.
h _{ef} +h _p	HIT-V in hollow and solid bricks: setting through the non-loadbearing (Figure A5c) Mark and set element to the required embedment depth until working time t _{work} has elapsed. The working time t _{work} is given in Table B11 and Table B12.
oading the anchor	
	Loading the anchor: After required curing time t_{cure} (see Table B11 and Table B12) the anchor can be loaded. The applied installation torque shall not exceed the values T_{max} given in tables E to B10.

Hilti HII-HY 270

Intended Use Installation instructions

English translation prepared by DIBt

Use categories		w/w a	nd w/d	d/d	
Temperature range		Ta*	Tb*	Ta*	Tb*
Base material	Cleaning		•		•
Solid clay brick	CAC	0,96	0,96	0,96	0,96
N 771-1	MC	0,84	0,84	0,84	0,84
Solid calcium silicate brick EN 771-2	CAC/MC	-	-	0,96	0,80
Solid light weight concrete brick EN 771-3	CAC	0,82	0,68	0,96	0,80
	MC	0,81	0,67	0,90	0,75
Solid normal weight concrete brick EN 771-3	CAC/MC	0,96	0,80	0,96	0,80
Hollow clay brick	CAC	0,81	0,81	0,81	0,81
EN 771-1	MC	0,71	0,71	0,71	0,71
Hollow calcium silicate brick EN 771-2	CAC/MC	-	-	0,96	0,80
Hollow light weight concrete brick	CAC	0,69	0,57	0,81	0,67
EN 771-3	MC	0,68	0,56	0,76	0,63
Hollow normal weight concrete brick EN 771-3	CAC/MC	0,96	0,80	0,96	0,80

*Temperature range Ta / Tb see Annex B1

Hilti HIT-HY 270

Performances

 $\beta\text{-factors}$ for job-site testing under tension load

Table C2: Characteristic values of steel resistance for threaded rods under tension and shear loads in masonry

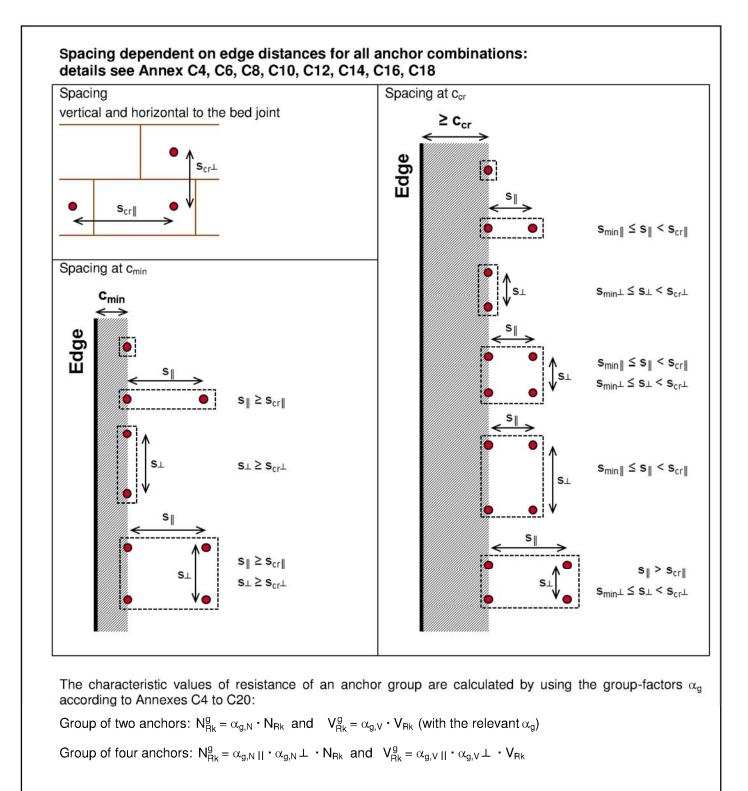

Steel failure tension loads			M8	M10	M12	M16
HIT-V-5.8(F)	N _{Rk,s}	[kN]	18	29	42	79
HIT-V-8.8(F)	N _{Rk,s}	[kN]	29	46	67	126
HIT-V-R	N _{Rk,s}	[kN]	26	41	59	110
HIT-V-HCR	N _{Rk,s}	[kN]	29	46	67	126
Steel failure shear loads without lever an	n					•
HIT-V-5.8(F)	V _{Rk,s}	[kN]	9	15	21	39
HIT-V-8.8(F)	$V_{Rk,s}$	[kN]	15	23	34	63
HIT-V-R	$V_{Rk,s}$	[kN]	13	20	30	55
HIT-V-HCR	$V_{Rk,s}$	[kN]	15	23	34	63
Steel failure shear loads with lever arm						•
HIT-V-5.8(F)	M _{Rk,s}	[Nm]	19	37	66	167
HIT-V-8.8(F)	M _{Rk,s}	[Nm]	30	60	105	266
HIT-V-R	$M_{Rk,s}$	[Nm]	26	52	92	233
HIT-V-HCR	$M_{Rk,s}$	[Nm]	30	60	105	266

Table C3: Characteristic values of steel resistance for internal threaded sleeve HIT-IC under tension and shear loads in masonry

	-			
		M8	M10	M12
N _{Rk,s}	[kN]	5,9	7,3	13,8
				•
$V_{Rk,s}$	[kN]	9	15	21
$V_{Rk,s}$	[kN]	15	23	34
				•
$M_{Rk,s}$	[Nm]	19	37	66
$M_{Rk,s}$	[Nm]	30	60	105
	V _{Rk,s} V _{Rk,s} M _{Rk,s}	V _{Rk,s} [kN] V _{Rk,s} [kN] M _{Rk,s} [Nm]	N _{Rk,s} [kN] 5,9 V _{Rk,s} [kN] 9 V _{Rk,s} [kN] 15 M _{Rk,s} [Nm] 19	N _{Rk,s} [kN] 5,9 7,3 V _{Rk,s} [kN] 9 15 V _{Rk,s} [kN] 15 23 M _{Rk,s} [Nm] 19 37

Hilti HIT-HY 270	
Performances Characteristic resistances under tension and shear load – steel failure	Annex C2

Hilti HIT-HY 270

Performances Anchor spacing

Brick type: Solid clay bri	ck Mz, 2D	F		
Table C4: Description of	brick			
Brick type			Solid Mz, 2DF	
Bulk density	ρ	[kg/dm ³]	≥ 2,0	and the second
Compressive strength	f _b	[N/mm ²]	≥ 12	
Code			EN 771 - 1	T I
Producer				
Brick dimensions		[mm]	≥ 240 x 115 x 113	
Minimum wall thickness	h _{min}	[mm]	≥ 115	

Çmin	1 Single fastening
	2 4 anchors at min. edge distance
	2a) 2 anchors horizontal at min. edge distance
	(2b) 2 anchors vertical at min. edge distance
115	(3a) 2 anchors horizontal at characteristic edge distance
	(3b) 2 anchors vertical at characteristic edge distance
	4 Characteristic horizontal spacing in header
	5 Characteristic horizontal spacing in stretcher
.	6 Charact. vertical spacing in header and stretcher
Scr.II, Stretcher	

Table C5: Installation parameter for all anchor combinations (Table B3)

Anchor type		see Table B3	
Edge distance	c _{min} [mm]	50	
	c _{cr} [mm]	115	
Spacing	s _{min II} [mm]	50 at c_{cr} and 115 at c_{min}	
	s _{min} ⊥[mm]	50 at c_{cr} and 115 at c_{min}	
Header	s _{cr II} [mm]	115	
Stretcher	s _{cr II} [mm]	240	
Header and Stretcher	s _{cr ⊥} [mm]	115	

Table C6: Group factor for group fastenings ($\alpha_g \le 2$ per group fastenings)

Group factor	$\alpha_{g,N \parallel} \alpha_{g,V \parallel} \alpha_{g,N} \perp \alpha_{g,V} \perp [-]$	2 at c _{cr} and s _{cr}
Group factor	$\alpha_{g,V \parallel} \alpha_{g,V \perp}$ [-]	0,3 for Position 2a, 3a, 3b
Group factor	$\alpha_{g,N \parallel} \alpha_{g,N \perp}$ [-]	1 for Position 2a, 3a, 3b

Hilti HIT-HY 270

Performances solid clay brick Mz, 2DF Installation parameters and group factor

Characteristic resistances for all anchor combinations (see Table B3)

Table C7: Tension resistance at edge distance $c \ge c_{cr}$

Use category			w/w :	= w/d	d/d	
Service temperature range			Та	Tb	Та	Tb
Anchor size	h _{ef} [mm]	f _b [N/mm ²]	$N_{Rk,p} = N_{Rk,b} [kN]$			
	≥ 50	12	2,5 (3,0*)	2,5 (3,0*)	2,5 (3,0*)	2,5 (3,0*)
All anchor	≥ 80	12	3,5 (4,0*)	3,5 (4,0*)	3,5 (4,0*)	3,5 (4,0*)
	≥ 100	12	6,0 (7,0*)	6,0 (7,0*)	6,0 (7,0*)	6,0 (7,0*)

* CAC cleaning only

Table C8: Tension resistance at edge distance $c_{min} \le c < c_{cr}$

VV / VV	w/w = w/d		d/d	
Та	Tb	Та	Tb	
1 ²]	$N_{Rk,p} = N_{Rk,b} [kN]$			
1,5 (2,0*)	1,5 (2,0*)	1,5 (2,0*)	1,5 (2,0*)	
	1 ²]	1 ²] N _{Rk,p} = I	Ta Tb Ta 1 ²] N _{Rk,p} = N _{Rk,b} [kN]	

* CAC cleaning only

Table C9: Shear resistance at edge distance $c \ge c_{cr}$

Use category			w/w = w/d d/d			/d
Service temperature rai	nge		Та	Tb	Та	Tb
Anchor size	h _{ef} [mm]	f _b [N/mm²]	V _{Rk,b} [kN]			
All anchor	all	12		2	,0	

Table C10: Shear resistance at edge distance $c_{min} \le c < c_{cr}$

Use category			w/w = w/d		d/d	
Service temperature rar	nge		Та	Tb	Та	Tb
Anchor size	h _{ef} [mm]	f _b [N/mm²]	V _{Rk,c} [kN]			
All anchor	all	12	calculation according ETAG029 Annex C, equation C5.6)29

Table C11: Displacements

h _{ef}	Ν	δ _{N0}	δ _{N∞}	V	δ_{V0}	$\delta_{V_{\infty}}$
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
50	0,86	0,1	0,2	0,6	0,5	0,8
80	1,3	0,2	0,4	0,6	0,5	0,8
100	1,7	0,3	0,6	0,6	0,5	0,8

Hilti HIT-HY 270

Performances solid clay brick Mz, 2DF

Characteristic values of resistance under tension and shear loads Displacements

Deutsches Institut für Bautechnik

Brick type: Solid calcium silicate brick KS, 2DF

Table C12: Description of brick

Brick type			Solid KS, 2DF	
Bulk density	ρ	[kg/dm ³]	≥ 2,0	
Compressive strength	f _b	[N/mm ²]	≥ 12 or ≥ 28	1 Com
Code			EN 771 - 2	
Producer				
Brick dimensions		[mm]	≥ 240 x 115 x 113	
Minimum wall thickness	h _{min}	[mm]	≥ 115	

	Single fastening
	2 4 anchors at min. edge distance
	2a 2 anchors horizontal at min. edge distance
	2b 2 anchors vertical at min. edge distance
	(3a) 2 anchors horizontal at characteristic edge distance
	(3b) 2 anchors vertical at characteristic edge distance
	4 Characteristic horizontal spacing in header
	5 Characteristic horizontal spacing in stretcher
• <u></u> 5	6 Charact. vertical spacing in header and stretcher
Scr.II.Stretcher	

Table C13: Installation parameter for all anchor combinations (Table B3)

Anchor type		see Table B3	
Edge distance	c _{min} [mm]	50	
	c _{cr} [mm]	115	
Spacing	s _{min II} [mm]	50 at c_{cr} and 115 at c_{min}	
	s _{min} ⊥[mm]	50 at c_{cr} and 115 at c_{min}	
Header	s _{cr Ⅱ} [mm]	115	
Stretcher	s _{cr Ⅱ} [mm]	240	
Header and Stretcher	s _{cr ⊥} [mm]	115	

Table C14: Group factor for group fastenings ($\alpha_g \leq 2$ per group fastenings)

Group factor	$\alpha_{g,N} \parallel \alpha_{g,V} \parallel \alpha_{g,N} \perp \alpha_{g,V} \perp [-]$	2 at c _{cr} and s _{cr}
Group factor	$\alpha_{g,V \parallel} \alpha_{g,V \perp}$ [-]	0,5 for Position 2a, 3a, 3b
Group factor	$\alpha_{g,N \parallel} \alpha_{g,N \perp}$ [-]	1 for Position 2a, 3a, 3b

Hilti HIT-HY 270

Performances solid silica brick KS, 2DF Installation parameters and group factor

Characteristic resistances for all anchor combinations (see Table B3)

Table C15: Tension resistance at edge distance $c \ge c_{cr}$

Use category			w/w	= w/d	d	/d
Service temperature	range		Та	Tb	Та	Tb
Anchor size	h _{ef} [mm]	f _b [N/mm ²]		N _{Rk,p} = N	, R _{k,b} [kN]	•
All onchor	all	12	-	-	6,0	5,0
All anchor	an	28	-	-	9,0	7,5

Table C16: Tension resistance at edge distance $c_{min} \le c < c_{cr}$

Use category			w/w =	= w/d	d	/d
Service temperature rai	nge		Та	Tb	Та	Tb
Anchor size	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{N}_{\mathbf{Rk},\mathbf{p}} = \mathbf{N}_{\mathbf{Rk},\mathbf{b}} [\mathbf{kN}]$			•
All anabar		12	-		4,0	3,5
All anchor	all	28	-	-	6,5	5,5

Table C17: Shear resistance at edge distance $c \ge c_{cr}$

Use category			w/w =	= w/d	d	/d
Service temperature ran	nge		Та	Tb	Та	Tb
Anchor size	h _{ef} [mm]	f _b [N/mm ²]	V _{Rk,b} [kN]			•
All anchor		12	-		6	,0
All anchor	all	28	-		9	,0

Table C18: Shear resistance at edge distance $c_{min} \le c < c_{cr}$

Use category			w/w :	= w/d	d	/d
Service temperature rai	nge		Та	Tb	Та	Tb
Anchor size	h _{ef} [mm]	f _b [N/mm²]		V _{Rk,c}	[kN]	
All anchor	all	all	-	-		according G029
					Annex C, eo	quation C5.6

Table C19: Displacements

h _{ef}	N	δ _{N0}	δ _{N∞}	V	δ_{V0}	$\delta_{V\infty}$
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
all	2,5	0,3	0,6	2,5	1,0	1,5

Hilti HIT-HY 270

Performances solid silica brick KS, 2DF Characteristic values of resistance under tension and she

Characteristic values of resistance under tension and shear loads Displacements

Deutsches Institut für Bautechnik

Brick type: Solid lightweight concrete brick Vbl, 2DF

Table C20: Description of brick

Brick type			Solid Vbl, 2DF	
Bulk density	ρ	[kg/dm³]	≥ 0,9	Star Star
Compressive strength	f _b	[N/mm ²]	≥ 4 or ≥ 6	and the
Code			EN 771-3	a start and a start of
Producer				
Brick dimensions		[mm]	≥ 240 x 115 x 113	
Minimum wall thickness	h _{min}	[mm]	≥ 115	

	1 Single fastening
.	2 4 anchors at min. edge distance
	2a) 2 anchors horizontal at min. edge distance
	(2b) 2 anchors vertical at min. edge distance
_115	(3a) 2 anchors horizontal at characteristic edge distance
	(3b) 2 anchors vertical at characteristic edge distance
	4 Characteristic horizontal spacing in header
	5 Characteristic horizontal spacing in stretcher
5	6 Charact. vertical spacing in header and stretcher
Scr.II, Stretcher	

Table C21: Installation parameter for all anchor combinations (see Table B3)

Anchor type		see Table B3	
Edge distance	c _{min} [mm]	50	
	c _{cr} [mm]	115	
Spacing	s _{min II} [mm]	50 at c_{cr} and 115 at c_{min}	
	s _{min} ⊥[mm]	50 at c_{cr} and 115 at c_{min}	
Header	s _{cr II} [mm]	115	
Stretcher	s _{cr II} [mm]	240	
Header and Stretcher	s _{cr} ⊥ [mm]	115	

Table C22: Group factor for group fastenings ($\alpha_g \leq 2$ per group fastenings)

Group factor	$\alpha_{g,N \parallel} \alpha_{g,V \parallel} \alpha_{g,N \perp} \alpha_{g,V \perp} [-]$	2 at c_{cr} and s_{cr}	
Group factor	$\alpha_{g,N \parallel} \alpha_{g,V \parallel} \alpha_{g,N \perp} \alpha_{g,V \perp} [-]$	1 for Position 2a, 3a, 3b	

Hilti HIT-HY 270

Performances solid lightweight concrete brick Vbl, 2DF Installation parameters and group factor

Characteristic resistances for all anchor combinations (see Table B3)

Table C23: Tension resistance at edge distance $c \ge c_{cr}$

Use category Service temperature range			w/w	= w/d	d	/d
			Та	Tb	Та	Tb
Anchor size	h _{ef} [mm]	f _b [N/mm ²]	$\mathbf{N}_{\mathbf{Rk},\mathbf{p}} = \mathbf{N}_{\mathbf{Rk},\mathbf{b}} [\mathbf{kN}]$			
	≥ 50	4	3,0	2,0	3,0 (3,5*)	2,5
		6	3,5	3,0	4,0	3,0 (3,5*)
All anabar	> 00	4	4,5	3,5	5,0	4,0 (4,5*)
All anchor	≥ 80	6	5,5	4,5	6,0 (6,5*)	5,0 (5,5*)
	> 100	4	6,0	5,0	6,5 (7,0*)	5,5 (6,0*)
	≥ 100	6	7,5	6,0	8,0 (8,5*)	6,5 (7,0*)

* Compressed air cleaning only

Table C24: Tension resistance at edge distance $c_{\text{min}} \leq c < c_{\text{cr}}$

Use category			w/w = w/d		d/d	
Service temperature rai	nge		Та	Tb	Та	Tb
Anchor size	h _{ef} [mm]	f _b [N/mm²]	$N_{Rk,p} = N_{Rk,b} [kN]$			
All apphor		4	1,5	1,5	2,0	1,5
All anchor	all	6	2,0	1,5	2,5	2,0

Table C25: Shear resistance at edge distance $c \ge c_{cr}$

Use category Service temperature range			w/w = w/d		d/d	
			Та	Tb	Та	Tb
Anchor size	h _{ef} [mm]	f _b [N/mm²]	V _{Rk,b} [kN]			
Mo	all	4	2,0			
M8	all	6	2,5			
M10 to M16		4	2,5			
	all	6	3,0			

Table C26: Shear resistance at edge distance $c_{min} \le c < c_{cr}$

Use category			w/w = w/d		d/d			
Service temperature ran	nge		Ta Tb Ta			Tb		
Anchor size	h _{ef} [mm]	f _b [N/mm²]	V _{Rk,c} [kN]					
All anchor	all	all	cal	calculation according ETAG029 Annex C, equation C5.6				

Table C27: Displacements

h _{ef}	N	δ _{N0}	δ _{N∞}	V	δ_{V0}	$\delta_{V_{\infty}}$
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
all	2,5	0,3	0,6	1,8	2,0	3,0

Hilti HIT-HY 270

Performances solid lightweight concrete brick Vbl, 2DF Characteristic values of resistance under tension and shear loads Displacements

Deutsches Institut für Bautechnik

Brick type: Solid normal weight concrete brick Vbn, 2DF

Table C28: Description of brick

Brick type			Solid Vbn, 2DF	
Bulk density	ρ	[kg/dm³]	≥ 2,0	The second second
Compressive strength	f _b	[N/mm ²]	≥ 6 or ≥ 16	CT AL
Code			EN 771-3	
Producer				
Brick dimensions		[mm]	≥ 240 x 115 x 113	
Minimum wall thickness	h _{min}	[mm]	≥ 115	*

	1 Single fastening
.	2 4 anchors at min. edge distance
	2a) 2 anchors horizontal at min. edge distance
	(2b) 2 anchors vertical at min. edge distance
, <u>115</u> , ot (a)	(3a) 2 anchors horizontal at characteristic edge distance
	(3b) 2 anchors vertical at characteristic edge distance
	4 Characteristic horizontal spacing in header
	5 Characteristic horizontal spacing in stretcher
5	6 Charact. vertical spacing in header and stretcher
Scr,II,Stretcher	

Table C29: Installation parameter for all anchor combinations (see Table B3)

Anchor type		see Table B3
Edge distance	c _{min} [mm]	50
	c _{cr} [mm]	115
Spacing	s _{min II} [mm]	50 at c _{cr} and 115 at c _{min}
	s _{min} ⊥[mm]	50 at c _{cr} and 115 at c _{min}
Header	$S_{cr } = S_{cr} \perp [mm]$	115
Stretcher	s _{cr II} [mm]	240
Header and Stretcher	s _{cr} ⊥ [mm]	115

Table C30: Group factor for group fastenings ($\alpha_g \leq 2$ per group fastenings)

Group factor	$\alpha_{g,N \parallel} \alpha_{g,V \parallel} \alpha_{g,N \perp} \alpha_{g,V \perp} [-]$	2 at c_{cr} and s_{cr}
Group factor	$\alpha_{g,N \parallel} \alpha_{g,V \parallel} \alpha_{g,N \perp} \alpha_{g,V \perp} [-]$	1 for Position 2a, 3a, 3b

Hilti HIT-HY 270

Performances solid normal weight concrete brick Vbn, 2DF Installation parameters and group factor

Characteristic resistances for all anchor combinations (see Table B3)

Table C31: Tension resistance at edge distance $c \ge c_{cr}$

Use category			w/w = w/d		d/d	
Service temperature ra	nge		Ta Tb Ta T			Tb
Anchor size	h _{ef} [mm]	f _b [N/mm²]	$N_{Rk,p} = N_{Rk,b} [kN]$			
		6	3,0	2,5	3,0	2,5
All anchor	all	16	5,5	4,5	5,5	4,5

Table C32: Tension resistance at edge distance $c_{min} \le c < c_{cr}$

Use category			w/w = w/d		d/d	
Service temperature rar	nge		Ta Tb Ta T			Tb
Anchor size	h _{ef} [mm]	f _b [N/mm²]	$N_{Rk,p} = N_{Rk,b} [kN]$			
All anabar	all	6	1,5	1,2	1,5	1,2
All anchor	an	16	2,5	2,0	2,5	2,0

Table C33: Shear resistance at edge distance $c \ge c_{cr}$

Use category			w/w = w/d d/d			/d
Service temperature range			Та	Tb	Та	Tb
Anchor size	h _{ef} [mm]	f _b [N/mm²]	V _{Rk,b} [kN]			
All anchor	All anchor all 6		4,0			
All anchor	an	16		6	,5	

Table C34: Shear resistance at edge distance $c_{min} \le c < c_{cr}$

Use category			w/w = w/d		d	/d
Service temperature range			Та	Tb	Та	Tb
Anchor size	h _{ef} [mm]	f _b [N/mm²]	V _{Rk.c} [kN]			
All anchor	all	all	calculation according ETAG029 Annex C, equation C5.6			

Table C35: Displacements

h _{ef}	N	δ _{N0}	δ _{N∞}	V	δ_{V0}	$\delta_{V_{\infty}}$
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
all	1,5	0,3	0,6	1,8	2,0	3,0

Hilti HIT-HY 270

Performances solid normal weight concrete brick Vbn, 2DF Characteristic values of resistance under tension and shear loads Displacements

2

Scr.II

	on of brick				
Brick type			HIz12-1,4-10 DF		
Bulk density	ρ	[kg/dm³]	≥ 1,4		
Compressive strength	f _b	[N/mm ²]	≥ 12 or ≥ 20		
Code			EN 771 - 1		
Producer			Rapis		
Brick dimensions		[mm]	300 x 240 x 238	Drawing of the brick	
Minimum wall thickness	h _{min} [mn		≥ 240	see Table B4	
Çmin			Single fastening		
		2	4 anchors at min. edge d	istance	
	• (4) S _{cr.11}	•j (2a)	2 anchors horizontal at m	iin. edge distance	
		- 2b	2 anchors vertical at min.	edge distance	
	1	3	4 anchors at characteristi	c edge distance	
(1) (2a) · r (5)		(3a)	2 anchors horizontal at cl	haracteristic edge distance	
(2a) • ₹	() S J S			0	

Table C27.	Installation	aramatar fo	r all anoh	or combinations	(see Table B3)
Idule Col.	Installation	Jarameter it	л ан ансп		

4

5

Characteristic horizontal spacing

Characteristic vertical spacing

•

Anchor type		see Table B3					
Edge distance	c _{min} [mm]	50					
	c _{cr} [mm]	50 for tension and 150 for shear					
Spacing	s _{min II} = s _{min} ⊥[mm]	80 (HIT-SC 16x85)	90 (HIT-SC 18x85)	110 (HIT-SC 22x85)			
	s _{min} [mm]	S _{min II} =	s _{cr II ;} s _{min} ⊥= s _{cr} ⊥ for h	l _{ef} > 80			
	s _{cr ∥} [mm]						
	s _{cr} ⊥ [mm]						

Table C38: Group factor for group fastenings ($\alpha_g \le 2$ per group fastenings)

Group factor	$\alpha_{g,N \parallel} \alpha_{g,V \parallel} \alpha_{g,N \perp} \alpha_{g,V \perp} [-]$	2 at c_{cr} and s_{cr}
Group factor	$\alpha_{g,N \parallel} \alpha_{g,V \parallel} \alpha_{g,N \perp} \alpha_{g,V \perp} [-]$	1 for Position 3, 3a, 3b

Hilti HIT-HY 270

Performances hollow clay brick HIz, 10DF Installation parameters and group factor

Characteristic resistances for all anchor combinations (see Table B3)

Table C39: Tension resistance at edge distance $c \ge c_{cr}$

Use category	w/w = w/d		d/d				
Service temperature range			Та	Tb	Та	Tb	
Anchor size h _{ef} [mm] f _b [N/mm ²]			$\mathbf{N}_{\mathbf{Rk,p}} = \mathbf{N}_{\mathbf{Rk,b}} [\mathbf{kN}]$				
	≥ 80	12	1,5	1,5	1,5	1,5	
Threaded rod	≥ 80	20	2,0	2,0	2,0	2,0	
HIT-V M8 to M16	≥ 130	12	2,5 (3,0*)	2,5 (3,0*)	2,5 (3,0*)	2,5 (3,0*)	
	≥ 130	20	3,5 (4,0*)	3,5 (4,0*)	3,5 (4,0*)	3,5 (4,0*)	
Internal threaded sleeve	00	12	1,5	1,5	1,5	1,5	
HIT-IC M8, M10, M12	80	20	2,0	2,0	2,0	2,0	

* Compressed air cleaning only

Table C40: Shear resistance at edge distance $c \ge c_{cr}$

Use category		w/w = w/d d/d			/d		
Service temperature rai	Та	Tb	Та	Tb			
Anchor size	h _{ef} [mm]	f _b [N/mm²]	V _{Rk,b} [kN]				
HIT-V M8, M10, M12	≥ 80	12	2		,0		
HIT-IC M8	≥ 00	20		3,0			
HIT-V M16	≥ 80	> 20 12		3,5			
HIT-IC M10, M12	≥ 80	20	4,5				

Table C41: Shear resistance vertical to the free edge at edge distance $c_{min} \le c < c_{cr}$

Use category			w/w = w/d d			/d
Service temperature range			Та	Tb	Та	Tb
Anchor size	h _{ef} [mm]	c [mm]	V _{Rk,c,⊥} [kN]			
All onebor			1,25			
All anchor	all	≥ 250	see table C40			

Table C42: Shear resistance parallel to the free edge at edge distance $c_{min} \le c < c_{cr}$

Use category			w/w =	w/w = w/d		d/d	
Service temperature	emperature range			Tb	Та	Tb	
Anchor size	h _{ef} [mm]	c [mm]	V _{Rk,c,II} [kN]				
All anabar	> 50		1,25				
All anchor	all	≥ 100	see table C40; ≤ 2,5 kN				

Table C43: Displacements

h _{ef}	N	δ _{N0}	δ _{N∞}	V	δ _{vo}	δ_{V_∞}
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	0,7	0,1	0,2	1,7	1,0	1,5
130	1,4	0,3	0,6	1,7	1,0	1,5

Hilti HIT-HY 270

Performances hollow clay brick Hlz, 10DF Characteristic values of resistance under tension and shear loads Displacements

Deutsches Institut für Bautechnik

Table C44: Description o Brick type				KSL-12-1,4-8 DF	
Bulk density	ρ	[kg/d	dm³]	≥ 1,4	
Compressive strength	f _b	[N/m	nm²]	≥ 12 or ≥ 20	
Code				EN 771 – 2	
Producer				KS Wemding	
Brick dimensions		1]	mm]	248 x 240 x 238	Drawing of the brick
Minimum wall thickness	h _{min}	h _{min} [mm		≥ 240	see Table B4
			1 2 2 2 3 3	Single fastening 4 anchors at min. edge di 2 anchors horizontal at m 2 anchors vertical at min. 4 anchors at characteristi	in. edge distance edge distance c edge distance
(2a) • • •			(3a) (3b)	2 anchors horizontal at ch 2 anchors vertical at char	naracteristic edge distance acteristic edge distance
(2b) (2) (^b	SminI	3	(4)	Characteristic horizontal	spacing
	S S	(3a)	(5)	Characteristic vertical spa	
S _{cr,ll}	50	(3b)			

Table C45: Installation parameter for all anchor combinations (see Table B3)

Anchor type		see Table B3	
Edge distance	c _{min} [mm]	50	
	c _{cr} [mm	50 for tension and 125 for shear	
Spacing	s _{min II} [mm]	50	
	s _{min} ⊥[mm]	50	
	s _{cr II} [mm]	250	
	s _{cr} ⊥ [mm]	240	

Table C46: Group factor for group fastenings ($\alpha_g \le 2$ per group fastenings)

Group factor	$\alpha_{g,N \parallel} \alpha_{g,V \parallel} \alpha_{g,N \perp} \alpha_{g,V \perp} [-]$	2 at c _{cr} and s _{cr}
Group factor	$\alpha_{g,N \parallel} \alpha_{g,V \parallel} \alpha_{g,N} \perp \alpha_{g,V} \perp [-]$	1 for Position 3, 3a, 3b

Hilti HIT-HY 270

Performances hollow silica brick KSL, 8DF Installation parameters and group factor

Characteristic resistances for all anchor combinations (see Table B3)

Table C47: Tension resistance at edge distance $c \ge c_{cr}$

Use category Service temperature range Anchor size h _{ef} [mm] f _b [N/mm²]			w/w	= w/d	d/d	
			Та	Tb	Та	Tb
			$\mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{p}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{b}} [\mathbf{k}\mathbf{N}]$			
	≥ 80	12	-	-	4,0	3,0
Threaded rod HIT-V M8 to M16	≥ 80	20	-	-	5,5	4,5
	≥ 130	12	-	-	5,0	4,0
	≥ 130	20	-	-	7,5	6,0
HIT-IC M8, M10, M12	90	12	-	-	4,0	3,0
	80	20	-	-	5,5	4,5

Table C48: Shear resistance at edge distance $c \ge c_{cr}$

Use category Service temperature range			w/w =	w/d	d/d	
			Та	Tb	Та	Tb
Anchor size	h _{ef} [mm]	f _b [N/mm ²]		V _{Rk,t}	, [kN]	
		12	-		6,0	
HIT-V M8	≥ 80	20	-		9,0	
HIT-V M10 ≥ 80	> 00	12	-		9	,0
	≥ 80	20	-		12,0	
HIT-V M12, M16	≥ 80	12	-		10),0
HIT-IC M8, M10, M12	≥ 00	20	-		12	2,0

Table C49: Shear resistance vertical to the free edge at edge distance $c_{min} \le c < c_{cr}$

Use category			w/w = w/d		d/d	
Service temperature rai	nge		Та	Tb	Та	Tb
Anchor size	h _{ef} [mm]	c [mm]	V _{Rk,c,⊥} [kN]		•	
		≥ 50	1,25			
All anchor	≥ 250		see Table C48			

Table C50: Shear resistance parallel to the free edge at edge distance $c_{min} \le c < c_{cr}$

Use category	w/w =	⊧w/d	d/d			
Service temperature ra	nge		Та	Tb	Та	Tb
Anchor size	h _{ef} [mm]	c [mm]	V _{Rk,c,II} [kN]			
All anabar	all	≥ 50	1,25			
All anchor	an	≥ 100	see Table C48; ≤ 2,5 kN			

Table C51: Displacements

h _{ef}	Ν	δ _{N0}	δ _{N∞}	V	δ_{V0}	$\delta_{V\infty}$
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	1,0	0,3	0,6	4,3	2,0	3,0
130	2,1	0,3	0,6	4,3	2,0	3,0

Hilti HIT-HY 270

Performances hollow silica brick KSL, 8DF Characteristic values of resistance under tension and shear loads Displacements

Deutsches Institut für Bautechnik

Brick type			Hbl-4-0,7	
Bulk density	ρ	[kg/dm ³]	≥ 0,7	
Compressive strength	f _b	[N/mm ²]	≥ 2 or ≥ 6	
Code			EN 771-3	
Producer			Knobel	and the second
Brick dimensions		[mm]	495 x 240 x 238	Drawing of the brick
Minimum wall thickness	h _{min}	[mm]	≥ 240	see Table B4
<u>Cmip</u>	C _{cr}		Single fastening	
50, j	s _{cr,II}	2	4 anchors at min. edge d	istance
	4	(2a)	2 anchors horizontal at m	iin. edge distance
		(2b)	2 anchors vertical at min.	edge distance
S _{cr.II}	1 i i i i i i i i i i i i i i i i i i i	3	4 anchors at characterist	ic edge distance
(a) • (2a) • •	5) 5	(3a)	2 anchors horizontal at cl	naracteristic edge distance
				22,797

S _{cr.II}		U	4 anchors at characteristic euge distance
• 2a • ¥	(5) 3	(3a)	2 anchors horizontal at characteristic edge distance
(2b) (2) ₀ ¹⁵		(3b)	2 anchors vertical at characteristic edge distance
20 2 s		4	Characteristic horizontal spacing
	50 (3a)	5	Characteristic vertical spacing
		9	

Table C53: Installation parameter for all anchor combinations (see Table B3)

Anchor type		see Table B3	
Edge distance	c _{min} [mm]	50	
	c _{cr} [mm	50 for tension and 250 for shear	
Spacing	s _{min II} [mm]	50	
	s _{min} ⊥[mm]	50	
	s _{cr II} [mm]	240	
	s _{cr} ⊥ [mm]	240	

Table C54: Group factor for group fastenings ($\alpha_g \leq 2$ per group fastenings)

Group factor	$\alpha_{g,N \parallel} \alpha_{g,V \parallel} \alpha_{g,N} \perp \alpha_{g,V} \perp [-]$	2 at c_{cr} and s_{cr}
Group factor	$\alpha_{g,N \parallel} \alpha_{g,V \parallel} \alpha_{g,N \perp} \alpha_{g,V \perp} [-]$	1 for Position 3, 3a, 3b

Hilti HIT-HY 270

Performances hollow lightweight concrete brick Hbl, 16DF Installation parameters and group factor

Characteristic resistances for all anchor combinations (see Table B3)

Table C55: Tension resistance at edge distance $c \ge c_{cr}$

Use category Service temperature range			w/w :	= w/d	d/	′d
			Та	Tb	Та	Tb
Anchor size	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{N}_{\mathbf{Rk},\mathbf{p}} = \mathbf{N}_{\mathbf{Rk},\mathbf{b}} [\mathbf{kN}]$			
	≥ 80	2	1,2	0,9	1,5	1,2
Threaded rod	≥ 80	6	2,0	1,5	2,5	2,0
HIT-V M8 to M16	≥ 160	2	1,5	1,2	1,5 (2,0*)	1,5
Ī	≥ 160	6	2,5 (3,0*)	2,0	3,0 (4,0*)	2,5
	00	2	1,2	0,9	1,5	1,2
HIT-IC M8, M10, M12	80	6	2,0	1,5	2,5	2,0

* Compressed air cleaning only

Table C56: Shear resistance at edge distance $c \ge c_{cr}$

Use category			w/w = w/d		d/	/d	
Service temperature range			Та	Ta Tb Ta Tb			
Anchor size	h _{ef} [mm]	f _b [N/mm²]	V _{Rk,b} [kN]				
HIT-V M8, M10	≥ 80	> 2 2		3,5			
	≥ 00	6	6,0				
HIT-V M12, M16	≥ 80	2		4,5			
HIT-IC M8, M10, M12	≥ 00	6		8	,0		

Table C57: Shear resistance vertical to the free edge at edge distance $c_{min} \le c < c_{cr}$

Use category			w/w = w/d		d/d	
Service temperature range			Та	Tb	Та	Tb
Anchor size	h _{ef} [mm]	c [mm]	V _{Rk.c,} ⊥ [kN]			•
All anchor all		≥ 50	1,25			
All anchor	an	≥ 250		see Ta	ble C56	

Table C58: Shear resistance parallel to the free edge at edge distance $c_{min} \le c < c_{cr}$

Use category			w/w =	= w/d	d/d	
Service temperature	range		Ta Tb Ta T			Tb
Anchor size	h _{ef} [mm]	c [mm]	V _{Rk,c,II} [kN]			
All onchor	all	≥ 50		25		
All anchor	an	≥ 100		see Table C	56; ≤ 2,5 kN	

Table C59: Displacements

h _{ef}	N	δ _{N0}	δ _{N∞}	V	δ _{vo}	$\delta_{V_{\infty}}$
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	0,86	0,2	0,4	2,3	1,0	1,5
160	1,14	0,25	0,5	2,3	1,0	1,5


Hilti HIT-HY 270

Performances hollow lightweight concrete brick Hbl, 16DF Characteristic values of resistance under tension and shear loads Displacements

Deutsches Institut für Bautechnik

Brick type: Hollow normal weight concrete brick - parpaing creux Table C60: Description of brick

Brick type			B40	
Bulk density	ρ	[kg/dm ³]	≥ 0,9	
Compressive strength	f _b	[N/mm ²]	≥ 4 or ≥ 10	
Code		rojnan kene K	EN 771-3	
Producer			Fabemi (F)	a state of the second
Brick dimensions		[mm]	500 x 200 x 200	Drawing of the brick
Minimum wall thickness	h _{min}	[mm]	≥ 200	see Table B4

Table C61: Installation parameter for all anchor combinations (see Table B3)

Anchor type		see Table B3	
		See Table DS	
Edge distance	c _{min} [mm]	50	
	c _{cr} [mm	50 for tension and 200 for shear	
Spacing	s _{min II} [mm]	50	
	s _{min} ⊥[mm]	50	
	s _{cr II} [mm]	200	
	s _{cr} ⊥ [mm]	200	

Table C62: Group factor for group fastenings ($\alpha_g \leq 2$ per group fastenings)

Group factor	$\alpha_{g,N \parallel} \alpha_{g,V \parallel} \alpha_{g,N \perp} \alpha_{g,V \perp} [-]$	2 at c_{cr} and s_{cr}
Group factor	$\alpha_{g,N \parallel} \alpha_{g,V \parallel} \alpha_{g,N \perp} \alpha_{g,V \perp} [-]$	1 for Position 3, 3a, 3b

Hilti HIT-HY 270

Performances hollow normal weight concrete brick - parpaing creux Installation parameters and group factor

Characteristic resistances for all anchor combinations (see Table B3)

Table C63: Tension resistance at edge distance $c \ge c_{cr}$

Use category Service temperature range			w/w	= w/d	d	/d
			Та	Tb	Та	Tb
Anchor size	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{N}_{\mathbf{Rk},\mathbf{p}} = \mathbf{N}_{\mathbf{Rk},\mathbf{b}} [kN]$			
All anabara	> 50	4	0,9	0,9	0,9	0,9
All anchors	≥ 50	10	2,0	1,5	2,0	1,5
All anabara	> 120	4	1,5	1,2	1,5	1,2
All anchors	≥ 130	10	2,5	2,0	2,5	2,0

Table C64: Shear resistance at edge distance $c \ge c_{cr}$

Use category			w/w = w/d		d/d	
Service temperature r	ange		Ta Tb Ta T			Tb
Anchor size	h _{ef} [mm]	f _b [N/mm ²]	V _{Rk,b} [kN]			
All anabara		4	3,5			
All anchors	all	10		6	,0	

Table C65: Shear resistance vertical to the free edge at edge distance $c_{min} \le c < c_{cr}$

Use category			w/w = w/d		d/d	
Service temperature ra	nge		Ta Tb Ta			Tb
Anchor size	h _{ef} [mm]	c [mm]	V _{Rk.c.} ⊥ [kN]			
		≥ 50	1,25			
All anchor	an	≥ 250		see Ta	ble C64	

Table C66: Shear resistance parallel to the free edge at edge distance $c_{min} \le c < c_{cr}$

Use category			w/w = w/d		d/d		
Service temperature rat	nge	e Ta Tb Ta			Tb		
Anchor size	h _{ef} [mm]	c [mm]	V _{Rk.c.II} [kN]				
All anchor	all	≥ 50		1,25			
All anchor	an	≥ 100		see Table C	64; ≤ 2,5 kN		

Table C67: Displacements

h _{ef}	N	δ _{N0}	δ _{N∞}	V	δ _{vo}	δ _{v∞}
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
all	0,7	0,5	1,0	1,7	1,0	1,5

Hilti HIT-HY 270	
Performances hollow normal weight concrete brick - parpaing creux Characteristic values of resistance under tension and shear loads Displacements	Annex C19