

HILTI HVZ ADHESIVE CAPSULE

Technical Datasheet

HVZ (HVU-TZ+HAS-TZ) adhesive anchor system

Anchor design / Rods / Concrete

Anchor version

HVZ Mortar capsule

Benefits

- Suitable for cracked and noncracked concrete C20/25 to C50/60
- High loading capacity
- Suitable for dry and water saturated concrete

Anchor rod: HAS-TZ HAS-R-TZ HAS-HCR-TZ (M10-M20)

Base material

Concrete (cracked)

Dry concrete

Wet concrete

Load conditions

Static/ quasi-static resistance

Other information

Fire

Shock

Fatigue

Installation conditions

Hammer drilled holes

Hilti SafeSet technology

Small edge distance and spacing

European Technical Assessment

CE conformity

Corrosion resistance

High corrosion resistance

PROFIS design Software

Approvals / certificates

Description	Authority / Laboratory	No. / date of issue
European Technical Assessment a)	DIBt, Berlin	ETA-03/0032 / 2015-08-27
European Technical Assessment b)	DIBt, Berlin	ETA-17/0200 / 2020-10-05
Approval for shockproof fastenings in civil defense installations	Federal Office for Civil Protection, Bern	BZS D 09-602 / 2020-10-31
Fire test report ZTV – Tunnel	IBMB, Braunschweig	UB 3357/0550-2 / 2018-06-27
Fire test report	IBMB, Braunschweig	UB 3357/0550-1 / 2018-06-27
Assessment report (fire)	Warringtonfire	WF 327804/B / 2013-07-10

- All data given in this section according ETA-03/0032, issue 2015-08-27.
- b) All data given in this section according ETA-17/0200, issue 2020-10-05.

Static and quasi-static resistance (for a single anchor) - Design method: ETAG 001, Annex C

All data in this section applies to:

- Correct setting (See setting instruction)
- No edge distance and spacing influence
- Steel failure
- Base material thickness, as specified in the table
- Embedment depth, as specified in the table
- Anchor material, as specified in the tables
- Concrete C20/25
- Temperature range I

(min. Base material temperature -40°C, max. Long term/short term base material temperature: +50°C/80°C)

Effective anchorage depth for static

Anchor size			M10	M12	М	16	M20
Eff. Anchorage depth	h _{ef}	[mm]	75	95	105	125	170
Base material thickness	h _{min}	[mm]	150	190	210	250	340

Characteristic resistance

Anchor size			M10x75	M12x95	M16x105	M16x125	M20x170		
Non-cracked concrete									
Tension N _{Rk}	HAS-TZ	[LAJ]	32,8	40,0	54,3	70,6	111,9		
TEHSIOH INRK	HAS-RTZ, HAS-HCR-TZ	[kN]	32,8	40,0	54,3	70,6	111,9		
Oh a an M	HAS-TZ	FLA II	18,0	27,0	51,0	51,0	88,0		
Shear V _{Rk}	HAS-RTZ, HAS-HCR-TZ	[kN]	20,0	30,0	56,0	56,0	98,0		
Cracked concre	te								
Tanaian Na	HAS-TZ	[[4]]	23,4	33,3	38,7	50,3	79,8		
Tension N _{Rk}	HAS-RTZ, HAS-HCR-TZ	[kN]	23,4	33,3	38,7	50,3	79,8		
Chaor V-	HAS-TZ	[L/NI]	18,0	27,0	51,0	51,0	88,0		
Shear V _{Rk}	HAS-RTZ, HAS-HCR-TZ	[kN]	20,0	30,0	56,0	56,0	98,0		

Design resistance

- · ·									
Anchor size			M10x75	M12x95	M16x105	M16x125	M20x170		
Non-cracked concrete									
Tension N _{Rd}	HAS-TZ	[kN]	21,9	26,7	36,2	47,1	74,6		
I ension NRd	HAS-RTZ, HAS-HCR-TZ	[KIN]	21,9	26,7	36,2	47,1	74,6		
Shoor V	HAS-TZ	[LAJ]	14,4	21,6	40,8	40,8	70,4		
Shear V _{Rd}	HAS-RTZ, HAS-HCR-TZ	[kN]	16,0	24,0	44,8	44,8	78,4		
Cracked concre	ete								
Tanaian Na	HAS-TZ	[L/N]]	15,6	22,2	25,8	33,5	53,2		
Tension N _{Rd}	HAS-RTZ, HAS-HCR-TZ	[kN]	15,6	22,2	25,8	33,5	53,2		
Shoor V-	HAS-TZ	[LAN]]	14,4	21,6	40,8	40,8	70,4		
Shear V _{Rd}	HAS-RTZ, HAS-HCR-TZ	[kN]	16,0	24,0	44,8	44,8	78,4		

Recommended loads a)

Anchor size			M10x75	M12x95	M16x105	M16x125	M20x170	
Non-cracked concrete								
Tanaian Na	HAS-TZ	[LAI]	15,6	19,0	25,9	33,6	53,3	
I Elision NRec	ension N _{Rec} HAS-RTZ, HAS-HCR-TZ [kN]		15,6	19,0	25,9	33,6	53,3	
Choor V-	HAS-TZ	[[.]	10,3	15,4	29,1	29,1	50,3	
Shear V _{Rec}	HAS-RTZ, HAS-HCR-TZ	[kN]	11,4	17,1	32,0	32,0	56,0	
Cracked concrete	9							
Tension N _{Rec}	HAS-TZ	[kN]	11,1	15,9	18,4	24,0	38,0	
Tension Nec	HAS-RTZ, HAS-HCR-TZ	[KIN]	11,1	15,9	18,4	24,0	38,0	
Shear V _{Rec}	HAS-TZ	[kN]	10,3	15,4	29,1	29,1	50,3	
Sileai VRec	HAS-RTZ, HAS-HCR-TZ	[KIN]	11,4	17,1	32,0	32,0	56,0	

a) With overall partial dafety factor for action $\gamma = 1,4$. The partial safety factors for action depend on the type of loading and shall be taken from national regulations.

Fatigue resistance

All data in this section applies to:

- Correct setting (see setting instruction)
- No edge distance and spacing influence
- Embedment depth, as specified in the table
- One anchor material, as specified in the tables
- Concrete C20/25
- Temperature range I

(min. Base material temperature -40°C, max. Long term/short term base material temperature: +50°C/80°C)

Characteristic resistance under tension, shear and combined fatigue load in concrete (design method II acc. to TR 061)

HAS			TZ				HCR-TZ	
Anchor size	M10x75	M12x95	M16x105	M16x125	M12x95	M16x125		
TENSION FATIGUE LO	AD							
Steel failure								
Characteristic resistance	$\Delta N_{\text{Rk},s,0,\infty}$	[kN]	10,0	18,0	20,0	26,0	15,0	20,8
Partial factor	γMs,N,fat	[-]	1,35					
Concrete failure								
Effective embedment depth	h _{ef}	[mm]	75	95	105	125	95	125
Reduction factor ¹⁾	$\eta_{k,c,N,fat,\infty}$	[-]			0	,6		
Partial factor	γMc,fat	[-]			1	,5		
Load transfer factor for fastener group	ΨFN	[-]			0,	69		
Pull-out failure								
Partial factor	γMp,N,fat	[-]			1	,5		
Reduction factor	$\eta_{k,p,N,fat,\infty}$	[-]	0,6					
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	2)	40	2)	2)	40	2)
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	2)	2)	2)	2)	2)	2)
SHEAR FATIGUE LOAD)							
Steel failure								
Characteristic resistance	$\Delta V_{Rk,s,0,\infty}$	[kN]	4,5	8,5	15,0	15,0	8,5	7,6
Partial factor	γMs,V,fat	[-]			1,	35		
Concrete failure								
Effective length of fastener	l _f	[mm]	75	95	105	125	95	125
Effective outside diameter of fastener	d _{nom}	[mm]	10	12	16	16	12	16
Reduction factor ¹⁾	$\eta_{k,c,V,\text{fat},\infty}$	[-]			0	,6		
Partial factor	γMc,fat	[-]	1,5					
Load transfer factor for fastener group	ΨFV	[-]			0,	77		
COMBINED FATIGUE L	OAD							
Exponent for combined	αs	[-]	0,75	0,85	0,7	0,7	0,5	0,7
fatigue load	α_{c}	[-]			1	,5		

N_{Rk,c} according to EN 1992-4:2018 with N⁰_{Rk,c} with k_{cr,N} = 7,7 and k_{ucr,N} = 11,0; N_{Rk,sp} according to EN 1992-4:2018 with N⁰_{Rk,sp} = min (N_{Rk,c}); V_{Rk,c} according to EN 1992-4:2018; V_{Rk,cp} according to EN 1992-4:2018 with k₈ = 2,0.

²⁾ $N_{Rk,p} = N_{Rk,c}$ with $N_{Rk,c}$ according to EN 1992-4:2018 with $N_{Rk,c}^0$ with $k_{cr,N} = 7,7$ and $k_{ucr,N} = 11,0$.

Materials

Mechanical properties

Anchor size			M10x75	M12x95	M16x105	M16x125	M20x170
Nominal tensile strength fuk		[N/mm²]	800	800	800	800	800
Yield strength fyk		[N/mm²]	640	640	640	640	640
Ctropped prope agetion A	tension	[mm2]	44,2	63,6	113	113	227
Stressed cross-section As	shear	— [mm²]	50,3	73,9	141	141	245
Moment of resistance W	HVZ	[mm³]	50,3	89,6	236	236	541

Material quality

Part	Material Material
Metal parts made of zinc coated stee	el
Anchor rod HAS-TZ	Coated, elongation at fracture (I ₀ =5d) > 8% ductile
Filling washer	Electroplated zinc coated ≥ 5 μm
Spherical washer	Electroplated zinc coated ≥ 5 µm
Nut	Electroplated zinc coated ≥ 5 µm
Lock Nut	Electroplated zinc coated ≥ 5 µm
Metal parts made of stainless steel	
Anchor rod HAS-RTZ	Stainless steel 1.4401, 1.4404, elongation at fracture
Filling washer	Stainless steel
Spherical washer	Stainless steel
Nut	Stainless steel
Lock Nut	Stainless steel
Metal parts made of stainless steel a Corrosion resistance class III acc. to E	
Anchor rod HAS-HCR-TZ	Stainless steel 1.4529, elongation at fracture (I ₀ =5d) > 8%
Filling washer	Stainless steel
Spherical washer	Stainless steel
Nut	Stainless steel 1.4529
Lock Nut	Stainless steel

Filling set (contains filling washer, spherical washer and lock nut) needs to be purchased as separate item.

Setting information

Installation temperature range:

Static and quasi-static loading: -5°C to +40°C Fatigue cycling loading: 0°C to +40°C

In service temperature range:

Hilti HVZ adhesive anchor with anchor rod HAS-TZ may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Temperature range	Base material temperature	Maximum long term base material temperature	Maximum short term base material temperature
Temperature range I	-40 °C to +80 °C	+ 50°C	+ 80°C

Max short term base material temperature

Short-term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Max long term base material temperature

Long-term elevated base material temperatures are roughly constant over significant periods of time.

Curing time for mortar capsule HVU-TZa)

Temperature of the base material	Release screwed on setting tool curing time t _{rel}	Full load curing time t _{cure}
-5 °C ≤ T _{BM} < 0 °C	60 min	5 hour
0 °C ≤ T _{BM} < 10 °C	30 min	1 hour
10 °C ≤ T _{BM} < 20 °C	20 min	30 min
20 °C ≤ T _{BM} < 40 °C	8 min	20 min

a) The curing time data are valid for dry base material only. In wet base material, the curing times must be doubled.

Setting details

Anchor size				M10x75	M12x95	M16x105	M16x125	M20x170
Diameter of e	element	d	[mm]	10	12	16	16	20
Nominal dian	neter of drill bit	d ₀	[mm]	12	14	18	18	25
Effective and	horage depth	h _{ef}	[mm]	75	95	105	125	170
Drill hole dep	oth	h ₁	[mm]	90	110	125	145	195
Min. thicknes	ss of concrete member	h _{min} a)	[mm]	150	190	160	190	340
Standard fixt (without Filling	ure thickness ng Set)	t _{fix} d)	[mm]	15 / 30 / 50	25 / 40 / 50 / 100	30 /60 / 100	30 /60 / 100	40
Standard fixt (with Filling S	ure thickness Set)	t _{fix} d)	[mm]	10 / 21 / 41	10 / 30 40 / 90	16 / 19 / 49 / 89	16 / 19 / 49 / 89	-
	er of clearance hole in rithout Filling Set)	d _{f1}	[mm]	12	14	18	18	22
	er of clearance hole in rith Filling Set)	d _{f2}	[mm]	14	16	20	20	-
Cracked cor	ncrete							
Min. spacing		Smin	[mm]	50	60	70	70	80
Min. edge dis	stance	Cmin	[mm]	50	60	70	70	80
Non-cracked	d concrete							
Min. spacing		Smin	[mm]	50	60	70	70	80
Min. edge dis		C _{min}	[mm]	50	70	85	85	80
	ng for splitting failure	Scr,sp	[mm]			2 c _{cr,sp}		
Critical edge failure b)	distance for splitting	C _{cr,sp}	[mm]			1,5·h _{ef}		
Critical spaci failure	ng for concrete cone	Scr,N	[mm]	m] 2 C _{cr,N}				
Critical edge cone failure	distance for concrete	C _{cr,N}	[mm]			1,5 h _{ef}		
1 (11 (HAS-TZ			40	50	90	90	150
Installation torque c)	HAS-RTZ HAS-HCR-TZ	Tinst	[Nm]	50	70	100	100	150

For spacing (edge distance) smaller than critical spacing (critical edge distance) the design loads have to be

a) h: base material thickness (h ≥ h_{min})
b) The critical edge distance for concrete cone failure depends on the embedment depth h_{ef} and the design bond resistance. The simplified formula given in this table is on the save side.

Max. recommended torque moment to avoid splitting failure during installation with min. spacing and/or edge distance Other fixture thickness' are possible

Installation equipment

Anchor size	M10x75	M12x95	M16x105	M16x125	M20x170
Rotary hammer	TE 1 -TE 30		TE 1 –	TE 30 – TE 80	
Tools	compresse	d air gun and blov	v out pump, set of	cleaning brushes	s, dispenser

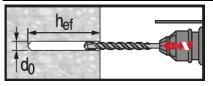
Setting tool

HAS-(E-)TZ	M10	M12	M16	M20
HAS-TZ	TE-C HEX M10	TE-C HEX M12	TE-C HEX M16	TE-C HEX M120
HAS-E-TZ	TE-C E M10	TE-C E M12	TE-C (Y) M16	TE-C E M20

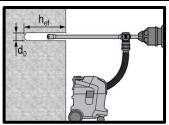
Drilling and cleaning parameters

HAS-TZ	Hammer drill	Hollow Drill Bit	Brush HIT-RB
	d₀ [mm]	size [mm]	
yand, b			
M10	12	-	12
M12	14	14	14
M16	18	18	18
M20	25	25	25

Setting instructions

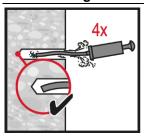

*For detailed information on installation see instruction for use given with the package of the product.

Safety regulations.

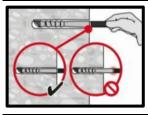

Review the Material Safety Data Sheet (MSDS) before use for proper and safe handling! Wear well-fitting protective goggles and protective gloves when working with Hilti HVZ.

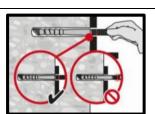
Hole drilling

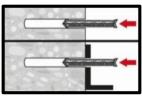
Hammer drilled hole


For dry or wet concrete, only.

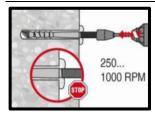
Hammer drilled hole with Hollow drill

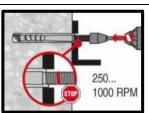

For dry and wet concrete, only. No cleaning required.


Hole cleaning

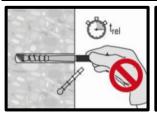

Manual cleaning for hammer drilled hole

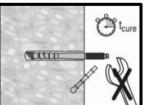
Setting the element

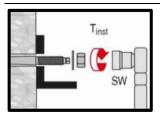




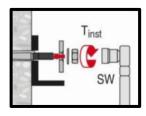
Check the setting depth.

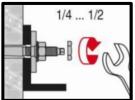


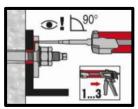

Insert the foil capsule with the peak ahead to the back of the hole.



Drive the anchor rod with the plugged tool into the hole.






After **required time** remove the screwed on setting tool and excess mortar

Loading the anchor after required curing time t_{cure} and apply installation torque

Use of filling set. Apply installation torque after required curing time, apply the lock nut and fill annular gap between anchor rod and fixture using Hilti injection mortar HY 200-A/R or HY 200-R V3.